

GV850 Software Development Guide

Version: 1.01

International Telematics Solutions Innovator

www.queclink.com

Document Title	GV850 Software Development Guide
Version	1.01
Date	2023-11-27
Status	Released

General Notes

Queclink offers this information as a service to its customers, to support application and engineering efforts that use the products designed by Queclink. The information provided is based upon requirements specifically provided to Queclink by the customers. Queclink has not undertaken any independent search for additional relevant information, including any information that may be in the customer's possession. Furthermore, system validation of this product designed by Queclink within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information which is the property of Queclink. Copying of this document, distribution to others or using or communication of the contents thereof is forbidden without express authority. Offenders are liable to the payment of damages. All rights are reserved in the event of a patent grant or the registration of a utility model or design. All specifications supplied herein are subject to change without notice at any time.

Copyright © Queclink Wireless Solutions Co., Ltd. 2023

Contents

1. Overview 2 2. Platform Development. 5 2. 1. devicetree 5 2.2. bootchain 5 2.3. Compilation Method. 6 2.4. Programming 7 USB OTG. 7 OTA. 8 3. Application Development 9 3.1. Debugging Tool 9 4. Interface and Driver 10 4.1. ITE 10 4.2. Watchdog 13 4.3. RTC 14 4.4. BLE 14 4.5. G-sensor 15 4.6. GPS 16 4.7. CAN 20 4.8. RS232/RS485 23 4.9. GPIO&ADC&1-WIRE 24 4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 32 6. Example of Codes 34 6.1. example_fole 34 6.2. example_formula_can 34 6.3. example_modem_at 35	0. Revision History	
2. Platform Development. 5 2.1. devicetree 5 2.2. bootchain 5 2.3. Compilation Method 6 2.4. Programming 7 USB OTG 7 OTA. 8 3. Application Development 9 3.1. Debugging Tool 9 4. Interface and Driver 10 4.1. LTE 10 4.2. Watchdog 13 4.3. RTC 14 4.4. BLE 14 4.5. G-sensor 15 4.6. GPS 16 4.7 CAN 20 4.8 RS232/RS485 23 4.9. GPIO&ADC&1-WIRE 24 4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 33 6. Example of Codes 34 6. Lexample_ble 34 6. 2. example_formula_can 34 6. 2. example_modem_at 35 6. 4. example_modem_at 35	1. Overview	
2.1. devicetree 5 2.2. bootchain 5 2.3. Compilation Method 6 2.4. Programming 7 USB OTG 7 OTA. 8 3. Application Development 9 3.1. Debugging Tool 9 4. Interface and Driver 10 4.1. LTE 10 4.2. Watchdog 13 4.3. RTC 14 4.4. BLE 14 4.5. G-sensor 15 4.6. GPS 16 4.7. CAN 20 4.8. RS232/RS485 23 4.9. GPIO&ADC&1-WIRE 24 4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 33 6. Example of Codes 34 6.1. example_ble 34 6.1. example_ble 34 6.2. example_formula_can 34 6.3. example_modem_at 35	2. Platform Development	
2.2. bootchain 5 2.3. Compilation Method 6 2.4. Programming 7 USB OTG 7 OTA 8 3. Application Development 9 3.1. Debugging Tool 9 4. Interface and Driver 10 4.1. LTE 10 4.2. Watchdog 13 4.3. RTC 14 4.4. BLE 14 4.5. G-sensor 15 4.6. GPS 16 4.7. CAN 20 4.8. RS232/RS485 23 4.9. GPIO&ADC&1-WIRE 24 4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 33 6. Example of Codes 34 6.1. example_ble 34 6.2. example_modem_at 34 6.4. example_modem_at 35 6.4. example_modem_at 35 6.4. example_modem_at 35 6.4. example_modem_at 35	2.1. devicetree	
2.3. Compilation Method. 6 2.4. Programming 7 USB OTG. 7 OTA. 8 3. Application Development 9 3.1. Debugging Tool 9 4. Interface and Driver 10 4. ItTE 10 4.2. Watchdog. 13 4.3. RTC 14 4.4. BLE 14 4.5. G-sensor. 15 4.6. GPS. 16 4.7. CAN 20 4.8. RS232/RS485. 23 4.9. GPIO&ADC&1-WIRE 24 4.10. Power&Battery 27 4.1. LED 28 5. System Sleep 29 5.1. RTC Wake-up 33 6. Example of Codes 34 6.1. example_ble 34 6.2. example_formula_can 34 6.4. example_modem_at 35 6.4. example_modem_at 35	2.2. bootchain	
2.4. Programming 7 USB OTG. 7 OTA. 8 3. Application Development 9 3.1. Debugging Tool 9 4. Interface and Driver 10 4.1. UTE 10 4.2. Watchdog 13 4.3. RTC. 14 4.4. BLE 14 4.5. G-sensor 15 4.6. GPS 16 4.7. CAN 20 4.8. RS232/RS485 23 4.9. GPI0&ADC&1-WIRE 24 4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 33 6. Example of Codes 34 6.1. example_ble 34 6.2. example_formula_can 34 6.4. example_modem_at 34 6.4. example_modem_at 35 6.4. example_modem_at 35	2.3. Compilation Method	
USB OTG	2.4. Programming	7
OTA	USB OTG	7
3. Application Development 9 3.1. Debugging Tool 9 4. Interface and Driver 10 4.1. LTE 10 4.2. Watchdog 13 4.3. RTC 14 4.4. BLE 14 4.5. G-sensor 15 4.6. GPS 16 4.7. CAN 20 4.8. RS232/RS485 23 4.9. GPIO&ADC&1-WIRE 24 4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 32 5.2. UART Wake-up 33 6. Example of Codes 34 6.1. example_ble 34 6.1. example_formula_can 34 6.4. example_modem_at 35 6.4. example_modem_at 35	OTA	
3.1. Debugging Tool 9 4. Interface and Driver 10 4.1. LTE 10 4.2. Watchdog 13 4.3. RTC 14 4.4. BLE 14 4.5. G-sensor 15 4.6. GPS 16 4.7. CAN 20 4.8. RS232/RS485 23 4.9. GPIO&ADC&1-WIRE 24 4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 33 6. Example of Codes 34 6.1. example of Codes 34 6.2. example formula_can 34 6.3. example_modem_at 35 6.4. example gensor 35	3. Application Development	9
4. Interface and Driver 10 4.1. LTE 10 4.2. Watchdog 13 4.3. RTC 14 4.4. BLE 14 4.5. G-sensor 15 4.6. GPS 16 4.7. CAN 20 4.8. RS232/RS485 23 4.9. GPIO&ADC&1-WIRE 24 4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 32 6. Example of Codes 34 6.1. example_ble 34 6.2. example_formula_can 34 6.3. example_modem_at 35 6.4. example gensor 35	3.1. Debugging Tool	9
4.1. LTE 10 4.2. Watchdog 13 4.3. RTC 14 4.4. BLE 14 4.5. G-sensor 15 4.6. GPS 16 4.7. CAN 20 4.8. RS232/RS485 23 4.9. GPIO&ADC&1-WIRE 24 4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 32 5.2. UART Wake-up 33 6. Example of Codes 34 6.1. example_ble 34 6.2. example_formula_can 34 6.3. example_modem_at 35 6.4 example gensor 36	4. Interface and Driver	
4.2. Watchdog	4.1. LTE	
4.3. RTC. 14 4.4. BLE 14 4.5. G-sensor 15 4.6. GPS. 16 4.7. CAN 20 4.8. RS232/RS485 23 4.9. GPIO&ADC&1-WIRE 24 4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 32 5.2. UART Wake-up 33 6. Example of Codes 34 6.1. example_ble 34 6.2. example_formula_can 34 6.3. example_modem_at 35 6.4. example gsensor 36	4.2. Watchdog	
4.4. BLE 14 4.5. G-sensor 15 4.6. GPS 16 4.7. CAN 20 4.8. R5232/R5485 23 4.9. GPIO&ADC&1-WIRE 24 4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 32 5.2. UART Wake-up 33 6. Example of Codes. 34 6.1. example_ble. 34 6.2. example_formula_can 34 6.3. example_modem_at 35 6.4 example gsensor 36	4.3. RTC	
4.5. G-sensor 15 4.6. GPS 16 4.7. CAN 20 4.8. RS232/RS485 23 4.9. GPIO&ADC&1-WIRE 24 4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 32 5.2. UART Wake-up 33 6. Example of Codes 34 6.1. example_ble 34 6.2. example_formula_can 34 6.3. example_modem_at 35 6.4. example_gsensor 36	4.4. BLE	
4.6. GPS 16 4.7. CAN 20 4.8. RS232/RS485 23 4.9. GPIO&ADC&1-WIRE 24 4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 32 5.2. UART Wake-up 33 6. Example of Codes 34 6.1. example_ble 34 6.2. example_formula_can 34 6.3. example_modem_at 35 6.4. example_modem_at 35	4.5. G-sensor	
4.7. CAN 20 4.8. RS232/RS485 23 4.9. GPIO&ADC&1-WIRE 24 4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 32 5.2. UART Wake-up 33 6. Example of Codes 34 6.1. example_ble 34 6.2. example_formula_can 34 6.3. example_modem_at 35 6.4. example 35	4.6. GPS	
4.8. RS232/RS485	4.7. CAN	
4.9. GPIO&ADC&1-WIRE. 24 4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 32 5.2. UART Wake-up 33 6. Example of Codes. 34 6.1. example_ble. 34 6.2. example_formula_can 34 6.3. example_modem_at 35 6.4. example_gsensor 36	4.8. RS232/RS485	
4.10. Power&Battery 27 4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 32 5.2. UART Wake-up 33 6. Example of Codes 34 6.1. example_ble 34 6.2. example_formula_can 34 6.3. example_modem_at 35 6.4. example_gsensor 36	4.9. GPIO&ADC&1-WIRE	
4.11. LED 28 5. System Sleep 29 5.1. RTC Wake-up 32 5.2. UART Wake-up 33 6. Example of Codes 34 6.1. example_ble 34 6.2. example_formula_can 34 6.3. example_modem_at 35 6.4. example_gsensor 36	4.10. Power&Battery	
5. System Sleep 29 5.1. RTC Wake-up 32 5.2. UART Wake-up 33 6. Example of Codes 34 6.1. example_ble 34 6.2. example_formula_can 34 6.3. example_modem_at 35 6.4. example_gsensor 36	4.11. LED	
5.1. RTC Wake-up 32 5.2. UART Wake-up 33 6. Example of Codes 34 6.1. example_ble 34 6.2. example_formula_can 34 6.3. example_modem_at 35 6.4. example_gsensor 36	5. System Sleep	
5.2. UART Wake-up 33 6. Example of Codes 34 6.1. example_ble 34 6.2. example_formula_can 34 6.3. example_modem_at 35 6.4. example_gsensor 36	5.1. RTC Wake-up	
6. Example of Codes	5.2. UART Wake-up	
6.1. example_ble	6. Example of Codes	
6.2. example_formula_can 34 6.3. example_modem_at 35 6.4. example_gsensor 36	6.1. example_ble	
6.3. example_modem_at	6.2. example_formula_can	
6.4. example gsensor 36	6.3. example_modem_at	
	6.4. example_gsensor	

0. Revision History

Version	Date	Author	Description of Change
1.00	2023-09-25	Alex Liao	Initial
1.01	2023-11-21	Alex Liao	Added more information to make the file more complete.

1. Overview

MPU	STM32MP133A
RAM	128MB, DDR3 or above
FLASH memory	128MB SPI or above
Status LEDs	1 x Power, 1 x CEL, 1 x GNSS LED, 1 x CAN/Tachograph
SIM	1 x SIM card slot or eSIM
Modem	Support Cat 1 LTE-FDD: B1/B3/B5/B7/B8/B20/B28 GSM: B2/B3/B5/B8
RS232 or RS485	2 x RS232, 300-115200 baud rate 1 x RS485, 300-115200 baud rate/Half Duplex (2 wires)
1/0	 1 x positive trigger input for ignition detection 5 x negative trigger inputs 4 x analog input (0-32V) 5 x digital output, open drain, 150mA max drive current 1 DC 5V output for temperature sensor 3.5V outputs for external accessories
CAN	CAN1H/CAN1L, support reading CAN bus data in heavy (J1939/FMS) and light vehicle CAN2H/CAN2L, support reading and download tachograph data, support reading CAN data in J1708 and OBDII
K-Line	Connect D8 of tachograph for live data reading
Type-C USB	Used for configuration, upgrade and debug
1-Wire Interface	Support 1-wire temperature sensor and iButton driver ID
GNSS	u-box all-in-one GNSS receiver, support GPS, Glonass, Galileo, Beidou
BLE	BLE5.2
Battery	Li-Polymer, 250mAh
G-sensor	6-axis motion, motion detection, harsh driving detection, shock detection
Reset button	Reset button to reset system
Cellular Antenna	Internal or external
GNSS Antenna	Internal or external
BLE Antenna	Internal

Sleep Current	< 10mA			
Firmware/configuration				
Operating system	Linux OS, Kernel 5.15.67			
Power				
Connector	Pin connector			
Input voltage range	8 – 32 VDC, reverse polarity protection; surge protection >31 VDC 10us max			
Power consumption	5W (average)			
Physical Specification				
Dimensions	123*80*21mm (L*W*H)			
Weight	150g			
Mounting options	Flat surface placement			
Operating Environment				
Operating temperature	-30 °C to 75 °C			
Operating humidity	10% to 90% RH non-condensing			
Ingress Protection Rating	IP30			

The hardware block diagram is as following:

Two construction methods, buildroot and yocto, and corresponding SDK source codes, are provided. The positioning from Linux of these two construction methods differs (though both are commonly used in embedded systems, but there are differences in efficiency and usage methods):

- Buildroot, which builds a more streamlined and simple system and is suitable for devices with limited hardware resources (mainly flash);
- Yocto, which builds a system with rich features and supports more complete hardware, including UI, audio and video software stacks, requiring a larger flash size.

2. Platform Development

At present, source codes for building systems based on buildroot are provided, which can build and package complete system images.

2.1. devicetree

The first step in developing STM32MP1 platform devices is to adapt a devicetree based on its hardware. Moreover, because the devicetree is used in each module of bootchain, it is a complex and cumbersome operation to ensure that each module obtains the correct devicetree during compilation. Therefore, ST has provided the STM32CubeMX tool to provide visualization, assistance, and configuration wizards that can automatically generate the devicetree required by each module. The provided buildroot source codes already contain the adapted devicetree.

2.2. bootchain

The STM32MP133 platform is based on the ARM Cortex-A7 architecture, and the boot process is similar to other ARM architectures. It is mainly divided into the following stages:

ROM code FSBL (First stage bootloader) TF-A SSBL (Second-stage bootloader), u-boot

Please search "boot chain" in following link to get more information.

https://wiki.stmicroelectronics.cn/stm32mpu/wiki/Main_Page

After understanding the startup process of STM32 ARM, it's known that the actual module relationship is:

TF-A->OP-TEE->U-BOOT->Linux Kernel

2.3. Compilation Method

To use the Buildroot, there must be a Linux distribution installed on the workstation. Any reasonably recent Linux distribution (Ubuntu, Debian, Fedora, Redhat, OpenSuse, etc.) will work fine. Then, a small set of packages needs to be installed as described in the System Requirements section of Buildroot Manual.

For Debian/Ubuntu distributions, use the following command to install the necessary packages:

 $\$ sudo apt-get install -y debianutils sed make binutils build-essential gcc g++ $\$

bash patch gzip bzip2 perl tar cpio unzip rsync file bc git \

wget python3 libssl-dev libncurses-dev

After finishing installation, extract source tarball that is provided:

\$ tar zxvf GV850_buildroot_dd981da1.tar.gz

Go to the Buildroot directory:

\$ cd GV850_buildroot_dd981da1/buildroot/

And then, configure the system you want to build by using the defconfigs provided in this BR2_EXTERNAL tree.

\$ make BR2_EXTERNAL=../buildroot-external-st st_stm32mp133a_queclink_GV850CEU_defconfig

There are two pieces of information are provided:

1. The path to BR2_EXTERNAL tree, which is provided side-by-side to the Buildroot repository.

2. The name of the Buildroot configuration.

If there is the need to further customize the Buildroot configuration, please run 'make menuconfig', but for the first build, it is recommended to keep the configuration unchanged so that it can be verified that everything is working.

Start the build:

\$ make V=s

It might take between 30 and 60 minutes depending on the configuration that is chosen and how powerful the machine is. All software packages for building the entire Linux system for the STM32MP1 platform (e.g. cross-compilation toolchain, firmware, bootloader, Linux kernel, root filesystem) are already included, no downloading is needed unless default configuration is customized.

Buildroot might need to be authorized to root (or sudo) in order to compile some packages (related to Python 3) properly. If some permission failures are met, please retry:

\$ sudo make V=s

When the building is done, it will output images in the directory below, including u-boot, kernel, rootfs binary files.

\$ cd output/images

Following files in this directory are necessary for flashing, please copy and prepare for flashing.

- ├--- fip.bin
- ├── flash.tsv
- ├— metadata.bin
- ├— rootfs.ubi

└── tf-a-stm32mp133a-gv850ceu-mx.stm32

2.4. Programming

The device supports both USB OTG programming and OTA firmware updating.

USB OTG

After successfully building with Buildroot, the complete files required for programming can be obtained.

├— fip.bin	// FIP
├— flash.tsv	// Program partitions configuration table
├— metadata.bin	
├— rootfs.ubi	<pre>// Including kernel and file system rootfs</pre>
└── tf-a-stm32mp133a-gv850ceu-mx.stm32	// TF-A

The device first enters DFU mode. And then use the STM32CubeProgrammer tool to erase and programm the device. The method and steps are as follows:

1. Use the USB+UART 2-in-1 cable provided along with the device, open the COM device on a PC using the UART tool, and the baud rate is 115200bps;

2. Power on the device, the COM starts printing the startup log, and then quickly press any key on the keyboard. The startup process will be interrupted and it requires to enter the u-Boot command. Then, enter the following command to enter DFU mode;

STM32MP> stm32prog usb 0

Not: No othernot found
Net: No ethernet round.
Hit any key to stop autoboot: 0
STM32MP>
STM32MP> stm32prog usb 0
DFU alt info setting: done
#
UPLOAD done
Ctrl+C to exit
#
FlashLayout received, size = 653
DOWNLOAD OK
Ctrl+C to exit

3. Connect the USB of the cable to the PC, click the right button of the mouse to click refresh, after automatically scanning and finding the device that has entered DFU mode, and then click "Connect"

4. Select "Open file" to load the flash. tsv file from the released firmware, and note that select the correct path for "Browse";3. Click "Download" to start programming. After successful programming, power off the device, unplug and reinsert the USB Type-C cable, power on the device, and the device enters the boot process.

••	•						M STN	132CubeProgrammer		
STM32 CubeP	Programmer							Data Information	Notice	FI 🖸 🔰 🔆 🏹
=	Mem	ory 8	& File	e editing						Not connected
	Device	e mem	iory	flash.tsv × +						USB Connect
*	Address	s		- Size		Data width	n 32-bit •	Find Data 0x	Download 🔹	USB configuration Port USB1
OB	Select	Opt	Id	Name	Туре	IP	Offset	Binary		Serial number 0031001935325111313
CRU		-	0x1	fsbl-boot	Binary	none	0x0	tf-a-stm32mp133a-gv850ceu-mx.stm32	i i i i i i i i i i i i i i i i i i i	PID Ovdf11
CPU		-	0x3	fip-boot	FIP	none	0x0	fip.bin		Did Nith
swv		Р	0x4	fsbl1	Binary	nand0	0x00000000	tf-a-stm32mp133a-gv850ceu-mx.stm32		0x0483
		Р	0x5	fsbl2	Binary	nand0	0x00080000	tf-a-stm32mp133a-gv850ceu-mx.stm32		Read Unprotect (MCU)
		Ρ	0x6	metadata1	Binary	nand0	0x00100000	metadata.bin		TZEN Regression (MCU)
		Ρ	0x7	metadata2	Binary	nand0	0x00180000	metadata.bin		,
	Binaries	s path	(/Users/alex/Desktop/G	V850_FCTR00A0	1V01			Browse	-
	Log							Live Update Verbosity level 1	Q 2 Q 3	
	17:01:22	2 : Men	nory Pr	ogramming					^ 🚜	

ΟΤΑ

Still under development.

3. Application Development

In order to facilitate developers to familiarize themselves with the platform, example code and software packages of testing programs are provided. Please Compile it using the following command:

\$ make queclink-dirclean

\$ make queclink

3.1. Debugging Tool

GV850 only has USB and serial ports. During the development and debugging process, it is inevitable to frequently modify binary programs or scripts. In order to avoid using STM32Cube Programmer for programming, which is an inefficient method, serial or USB methods can be used.

rz, **sz** — A transmission tool that supports the ZMODEM/YMODEM/XMODEM protocol and can upload/download files to the device through client-end software. The transmission efficiency depends on the physical connection of the transmission, such as the serial port baud rate or USB speed rate;

Ethernet —— After enabling kernel configuration for STM32MP1 platform, the device can be plugged into the host PC through the OTG USB port. The device will be virtualized as an RNDIS network device, and a network device named "usb0" will also be generated inside the device system. After configuring the same network segment IP address, the two can communicate.

Reference IP address configured to the device:

\$ ifconfig usb0 192.168.0.1 netmask 255.255.255.0

It can be correctly identified as a network device on virtual machine ubuntu16

```
avalon@avalon–virtual–machine:~$ lsusb
Bus 001 Device 007: ID 0525:a4a2 Netchip Technology, Inc. Linux–USB Ethernet/RNDIS Gadget
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 003: ID 0e0f:0002 VMware, Inc. Virtual USB Hub
Bus 002 Device 002: ID 0e0f:0003 VMware, Inc. Virtual Mouse
Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
avalon@avalon–virtual–machine:~$
```

After configuring the IP address, network communication can be established.

\$ ifconfig ens35u1i1 192.168.0.2 netmask 255.255.255.0

Note: If due to driver issues, the virtual network device cannot be correctly identified. Please try to install/update the driver mod-rndis-driver-windows.zip.

4. Interface and Driver

4.1. LTE

Module model: EG915UEU, which is not in network card mode, but in uart module mode. It uses USART3, which corresponds to /dev/ttySTM3. The schematic diagram is as follows:

Reference testing commands

Set the baud rate to 115200bps and remove the incrnl attribute to avoid automatically converting input characters \r to \n. Remove the isig icanon echo echoe attribute to avoid output causing incorrect module command format +CME ERROR: 58 error.

\$ stty -F /dev/ttySTM3 ispeed 115200 ospeed 115200 cs8 -icrnl -isig -icanon -echo -echoe

Receive module uart output,

\$ cat /dev/ttySTM3

PA15 module power supply enable output high,

\$ gpioset 0 15=1

PF5 module startup signal,

\$ gpioset 5 5=1

\$ gpioset 5 5=0

Receive the module startup URC message,

RDY

Turn off echo,

\$ echo "ATEO" > /dev/ttySTM3

Internal antenna or external antenna can be selected, select internal antenna,

\$ gpioset 4 2=1

Or select external antenna,

\$ gpioset 4 2=0

WAKE_LTE (DTR pin PE14) controls the sleep of the module, high level allows sleep, and low level wakes up the module, \$ gpioset 4 14=0

Query the DTR pin status via command, if it is 0, sleep is not allowed,

\$ echo "AT+QGPIOR=25" > /dev/ttySTM3

+QGPIOR: 0

ОК

DTR pin output high level,

\$ gpioset 4 14=1

Query the DTR pin status via command, if it is 1, sleep is allowed

\$ echo "AT+QGPIOR=25" > /dev/ttySTM3

+QGPIOR: 1

ОК

Send the AT+QSCLK=1 command to enter sleep, \$ echo "AT+QSCLK=1" > /dev/ttySTM3

ОК

Sending any AT command will wake up the module, but at the appropriate time, it will enter sleep again unless the DTR pin output is at low level or the sleep function is turned off using the AT+QSCLK=0 command.

The module can notify the MPU through the level change of the WAKE_MCU (RI pin PD3). Due to the rapid level change, it is not possible to accurately obtain it using gpioget. Therefore, the gpiomon tool can be used for monitoring it.

For example, using command to turn off the module,

\$ echo "AT+QPOWD" > /dev/ttySTM3

POWERED DOWN

Monitoring receives GPIO level change events,

\$ gpiomon 3 3	
event: FALLING EDGE offset: 3 timestamp:	[2582.179763702]
event: RISING EDGE offset: 3 timestamp:	[2582.300251859]
event: FALLING EDGE offset: 3 timestamp:	[2582.618285921]
event: RISING EDGE offset: 3 timestamp:	[2582.618430593]

Use the provided example_modem_at tool for command testing, as detailed in the "Example of Codes" section. The LTE module can serve as a wake-up source for system sleep, as detailed in the "System Sleep" section.

The following demonstrates the process of how to connect to the network, send and receive TCP data.

Check for correct SIM card reading,

\$ echo "AT+CPIN?" > /dev/ttySTM3
+CPIN: READY

ОК

Check CS status, \$ echo "AT+CREG?" > /dev/ttySTM3 +CREG: 0,1

ОК

Attach PS domain,

\$ echo "AT+CGATT=1" > /dev/ttySTM3
OK
\$ echo "AT+CGATT?" > /dev/ttySTM3
+CGATT: 1

ОК

Activate PDP,

\$ echo "AT+QIACT=1" > /dev/ttySTM3

ОК

Check the PDP status and obtained IP address,

\$ echo "AT+QIACT?" > /dev/ttySTM3

+QIACT: 1,1,3,"10.162.247.73","2408:8456:3040:AB7:1:1:A0D9:4891"

ОК

Ping domain name to check network connectivity, \$ echo "AT+QPING=1,\"www.baidu.com\"" > /dev/ttySTM3 OK

+QPING: 0,"157.148.69.74",64,313,255 +QPING: 0,"157.148.69.74",64,61,255 +QPING: 0,"157.148.69.74",64,61,255 +QPING: 0,"157.148.69.74",64,50,255 +QPING: 0,4,4,0,50,313,87

Open socket, using 218.17.50.142:971 server/port as the example, \$ echo "AT+QIOPEN=1,0,\"TCP\",\"218.17.50.142\",971,0,0" > /dev/ttySTM3 OK

+QIOPEN: 0,0

Check the status of the socket and confirm that it is connected, \$ echo "AT+QISTATE?" > /dev/ttySTM3 +QISTATE: 0,"TCP","218.17.50.142",971,0,2,1,0,0,"uart1"

ОК

Send the test string '12345' in HEX format, \$ echo "AT+QISENDEX=0,\"3132333435\"" > /dev/ttySTM3

SEND OK

The server responds with data '67890', and the module will notify the module with a URC message upon receiving the data,

+QIURC: "recv",0

At this point, the received data can be read from the cache and the actual length and data will be returned,

\$ echo "AT+QIRD=0,1500" > /dev/ttySTM3	\$		
+QIRD: 5			
67890			
ОК			
Close socket,			
\$ echo "AT+QICLOSE=0" > /dev/ttySTM3			
ОК			
Check the status of the socket and co	nfirm that it is closed,		
\$ echo "AT+QISTATE?" > /dev/ttySTM3			
ОК			

4.2. Watchdog

GV850 adopts an external independent hardware watchdog.

Pin Name	Description	Remarks
DI 7	Watchdog onable IO	output high, enable watchdog
PI /	watchuog enable io	output low, disable watchdog
PG 14	Postart watchdog IO	Flip the level within 1.7s, otherwise a reset will be
	Restart watchdog IO	triggered.

The software watchdog restart is implemented through a qdog driver and a sysfs interface is provided to enable and disable the watchdog,

\$ Ismod | grep qdog

qdog 16384 0

Turn on watchdog and restart the watchdog automatically,

echo 1 > /proc/qlwatchdog_enabled

Turn off watchdog,

echo 0 > /proc/qlwatchdog_enabled

4.3. RTC

STM32MP133 has built-in RTC, device/dev/rtc0, and can be set and obtained through the system's built-in hwclock tool. When the system starts, it will be loaded and set as the local time of the system. Reference command:

Query the current system time,

\$ date	
Wed Jan 5 03:19:16 UTC 2000	
Set the system time to local time	
\$ date -s "2023-09-27 14:26:30"	
Wed Sep 27 14:26:30 UTC 2023	
Set the system time to RTC	
é le contra de la	

\$ hwclock –w

Read time from RTC

\$ hwclock -r

```
Wed Sep 27 14:27:12 2023 0.000000 seconds
```

The RTC can serve as a wake-up source for system sleep, as detailed in the "System Sleep" section.

4.4. BLE

Module model: BlueNRG-345AC, connected through I2C bus. STM32MP133 platform reads and writes from I2C bus 0 through/dev/i2c-0 device.

The reference testing commands are as follows:

PE15 power supply enable output high,

\$ gpioset 4 15=1										
PG7 is used to reset BLE,										
\$ gpioset 6 7=1										
Scan I2C bus 0,										
\$ i2cdetect -y 0										
0 1 2 3 4 5 6 7 8 9 a b c d e f										
00:										
10:										
20:										
30:										
D:										

After scanning the slave device on the I2C bus, the device boot message can be read. The BLE module serves as the I2C slave device with address 0xBE and register address 0x01, and reads 220 bytes each time. The command/protocol description is detailed in the document "BLE100 @ Bluetooth Internal Protocol".

```
$ i2ctransfer -y 0 w1@0x3e 0x01 r220
```

The provided example_ble tool can also be used for command testing, as detailed in the "Example of Codes" section. The BLE module is developed by Queclink itself. The command/protocol description is detailed in the document "BLE100 @ Bluetooth Internal Protocol".

The sleep of the BLE module can be controlled, PH12 output high level allows sleep and low level wakes up the module, \$ gpioset 7 12=1

BLE Module events can be notified to the MPU through the PG4 pin, such as sending the command AT+F=12 to the BLE module, which will wake up the MPU,

\$ example_ble AT+F=12
recv from BLE:
+ACK:F,12,1,OK

Level change events will be monitored on the PG4 pin

\$ gpiom	on 6 4			
event:	RISING	EDGE offset:	4 timestamp: [15970.085069234]
event: F	ALLING	EDGE offset:	4 timestamp: [15970.085634968]

The BLE module can serve as a wake-up source for system sleep, as detailed in the "System Sleep" section.

4.5. G-sensor

Sensor model: ICM-40607-K, connected through SPI bus. The system provides IIO driver and device node /sys/bus/iio/devices/iio: device2.

The hardware provides a sensor power supply enable pin. For current GV850, after power on, the output is of high level by default, that is, the G-sensor is turned on by default.

\$ gpioset 6 0=1

Use the provided example_gsensor tool for testing, as detailed in the "Example of Codes" section.

4.6. GPS

Module model: UBX_ M10050, connected through UART. It uses USART6, which corresponds to /dev/ttySTM6. It supports u-blox and NMEA protocols.

The reference testing commands are as follows:

Set the baudrate (38400 by default for M10050),

\$ stty -F /dev/ttySTM6 ispeed 38400 ospeed 38400 cs8

PD13 power supply enable output high level

\$ gpioset 3 13=1

Receive the NMEA data sent by the GPS module

\$ cat /dev/ttySTM6

\$GNRMC,041722.00,A,2234.41319,N,11356.88217,E,0.002,,050923,,,D,V*11

\$GNVTG,,T,,M,0.002,N,0.005,K,D*3F

\$GNGGA,041722.00,2234.41319,N,11356.88217,E,2,12,0.52,111.9,M,-2.7,M,,*5A

\$GNGSA,A,3,11,15,24,20,23,29,05,13,18,,,,0.97,0.52,0.82,1*06

\$GNGSA,A,3,09,36,10,34,05,11,,,,,,0.97,0.52,0.82,3*0F

\$GNGSA,A,3,07,13,28,02,06,59,16,40,27,09,30,20,0.97,0.52,0.82,4*0E

\$GNGSA,A,3,,,,,,0.97,0.52,0.82,5*06

(...)

Additionally, NMEA data can be forwarded to RS232_<N> serial port, and then open RS232 through the u-center tool to more intuitively parse NMEA data. The following example is to forward NMEA data to RS232_2 serial ports. Set RS232_2 baud rate to same 38400:

Set RS2S2_2 badd rate to same S8400.

\$ stty -F /dev/ttySTM2 ispeed 38400 ospeed 38400 cs8

Forward the data to RS232_2:

\$ cat /dev/ttySTM6 > /dev/ttySTM2

Then select the correct COM port and baud rate in the u-center tool to start receiving and parsing data.

Linux system can also provide parsing and control tools that support multi-protocol such as NMEA and u-blox through the integration of gpsd software. For more information on how to use the tools, please refer to the following website: https://gpsd.io/

cgps and gpsmon tools can instantly parse and display positioning data. cgps receives and parses JSON data containing positioning data information provided by gpsd services. And gpsmon directly parses and displays the raw data of the GPS module. Depending on the protocol supported by the module, choose to use u-blox or NMEA protocol accordingly.

							-Seen 3	7/Used	
Time 2023-09	-21T03:01:38.0	000Z (18)	GNS	SS	PRN	Elev	Azim	SNR	U
Latitude 22	2.57354400 N		GP	5	5	41.0	38.0	43.0	
Longitude 113	.94796870 E		GP	11	11	28.0	124.0	30.0	
Alt (HAE, MSL) 3	46.220, 355	5. 121 ft	GP	13	13	57.0	32.0	45.0	
Speed 0	.01 mph		GP	15	15	71.0	292.0	46.0	
Track (true, var):	0.0, -3.0	deg	GP	18	18	22.0	323.0	39.0	
Climb -8	3.27 ft/min		GP	20	20	25.0	71.0	41.0	
Status 3D D	GPS FIX (7 sec	s)	GP	23	23	12.0	289.0	37.0	
Long Err (XDOP, EPX	() 0.38, +/-	4.7 ft	GP	24	24	30.0	173.0	40.0	
Lat Err (YDOP, EPY	<pre>') 0.35, +/-</pre>	4.4 ft	GP	29	29	47.0	258.0	44.0	
Alt Err (VDOP, EPV	() 0.82, +/-	5.2 ft	GA	3	303	78.0	330.0	45.0	
2D Err (HDOP, CEP): 0.50, +/-	3.1 ft	GA	8	308	38.0	235.0	41.0	
3D Err (PDOP, SEP): 0.96, +/-	15.0 ft	GA	34	334	66.0	106.0	46.0	
Time Err (TDOP):	0.56		GA	36	336	17.0	132.0	39.0	
Geo Err (GDOP):	1.11		BD	1	401	48.0	121.0	42.0	
Speed Err (EPS)	+/- 0.2 mp	h	BD	3	403	65.0	190.0	44.0	
Track Err (EPD)	n/a		BD	6	406	44.0	180.0	40.0	
Time offset	-748330839.	226498000	BD	7	407	22.0	197.0	36.0	
Grid Square	0L62xn37		BD	8	408	48.0	6.0	41.0	
-More			LMor	°е	.—				

17

\$ gpsmon

The results of parsing data using the u-blox protocol:

/de	v/tt	/STM6	6				u-blox>
Ch	PRN	Az	Eι	S/N	Flag	U	ECEF Pos:
0	5	37	41	47	191f	Y	ECEF Vel:
1	11	124	29	32	091f	Y	
2	13	33	58	47	091f	Υ	LTP Pos:
3	15	290	71	48	091f	Y	LTP Vel:
4	18	323	21	39	091f	Y	
5	20	71	25	41	091f	Y	Time:
6	23	288	11	39	091f	Y	Time GPS: Day:
7	24	173	30	42	091f	Υ	
8	29	260	47	46	091f	Y	Est Pos Err m Est Vel Err m/s
9	127	257	20	40	1a17		PRNs: ## PDOP: xx.x Fix 0x Flags 0x
10	128	237	46	44	1a17		NAV SOL
11	129	149	60	0	0701		-
12	137	149	60	43	1a07		DOP [H] 0.5 [V] 0.8 [P] 1.0 [T] 0.6 [G] 1.1
13	213	327	78	45	091f	Y	NAV DOP
14	218	234	38	40	091f	Y	-
15	223	321	2	0	1210		TOFF: > 1 day PPS: N/A
		NAV-	SAT				
(26) b56	52010	4120	00c05	5a3e1	56f@	0060003800520031002200230053ad
(24) b56	2012	0100	000	5a3e1	5008	36f8ffe808120707000000376b

\$ gpsmon –n

The results of parsing data using the NMEA protocol:

/dev/ttySTM6	NMEA0183>										
Time: 2023-09-21T03:02:29.000Z Lat: 22 34.413000' N Lon: 113 56.877900' E Cooked TPV											
GPZDA GPGGA GPRMC GPGSA GPGBS GPGSV Sentences											
SVID PRN Az El SN HU GP 5 5 38 41 44 Y GP 13 13 32 57 45 Y GP 15 15 293 71 46 Y GP 18 18 323 22 40 Y GP 20 20 72 24 40 Y	Time: 030229.00 Latitude: 2234.4130 N Longitude: 11356.8779 E Speed: 0.0078 Course: 0.000 Status: A	Time: 030229.00 Latitude: 2234.4130 Longitude: 11356.8779 Altitude: 106.85 Quality: 2 Sats: 32 HDOP: 0.50									
GP 23 23 289 12 39 Y GP 24 24 173 31 40 Y GP 29 29 258 47 44 Y GP 0 0 149 60 40 N GP 11 11 125 28 22 N	MagVar: -3.0 W RMC Mode: A3 Sats: 5 13 15 +	Geoid: -2.98 GGA UTC: RMS: MA1. NTN.									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TOFF: > 1 day PPS: N/A 12 151 38 195 57 141 45 1	ORI: LAT: LON: ALT: GST									

Check u-blox version:

\$ ubxtool -p MON-VER UBX-MON-VER: swVersion ROM SPG 5.10 (7b202e) hwVersion 000A0000 extension FWVER=SPG 5.10 extension PROTVER=34.10 extension GPS;GLO;GAL;BDS extension SBAS;QZSS

WARNING: protVer is 10.00, should be 34.10. Hint: use option "-P 34.10"

UBX-NAV-PVT:

iTOW 357228000 time 2023/9/21 03:13:30 valid x37
tAcc 24 nano -443396 fixType 3 flags x3 flags2 xea
numSV 32 lon 1139479540 lat 225735412 height 110133
hMSL 112846 hAcc 580 vAcc 1212
velN -1 velE 2 velD 17 gSpeed 2 headMot 0
sAcc 112 headAcc 17333086 pDOP 103 reserved1 0 16476 12118
headVeh 3102272 magDec 0 magAcc 0
()

You can use the following commands to perform cold start and calculate the time it takes from no positioning to positioning by the status change of the cgps monitoring tool:

\$ ubxtool -p COLDBOOT -P 34.10

				-Seen 4	40/Used	1 15-
Time n/a (18) 18)	GNSS	PRN	Elev	Azim	SNR	Use
Latitude n/a	GP 5	5	38.0	53.0	42.0	Y
Longitude n/a	GP 6	6	0.0	0.0	25.0	Y
Alt (HAE, MSL) n/a, n/a	GP 11	11	19.0	133.0	39.0	Y
Speed n/a	GP 13	13	45.0	31.0	46.0	Y
Track (true, var): n/a deg	GP 15	15	68.0	330.0	47.0	Y
Climb n/a	GP 18	18	32.0	325.0	41.0	Y
Status NO FIX (14 secs)	GP 20	20	20.0	83.0	37.0	Y
Long Err (XDOP, EPX) 0.54, n/a	GP 23	23	17.0	299.0	36.0	Y
Lat Err (YDOP, EPY) 0.47, n/a	GP 24	24	42.0	167.0	44.0	Y
Alt Err (VDOP, EPV) 0.75, n/a	GP 29	29	42.0	241.0	44.0	Y
2D Err (HDOP, CEP): 0.50, n/a	SB120	- 33	50.0	322.0	47.0	Y
3D Err (PDOP, SEP): 0.90, n/a	SB121	34	60.0	128.0	46.0	Y
Time Err (TDOP): 0.60	SB121	34	19.0	164.0	40.0	Υ
Geo Err (GDOP): 1.36	SB123	36	10.0	139.0	38.0	Y
Speed Err (EPS) n/a	SB146	59	52.0	126.0	45.0	Y
Track Err (EPD) n/a	GP 7	7	0.0	0.0	24.0	Ν
Time offset -748330840.85829871	9 GP 30	30	0.0	0.0	24.0	Ν
sGrid Square n/a	SB125	38	56.0	35.0	46.0	Ν
└─More	_LMore	. q—				
{"class":"TPV","device":"/dev/ttySTM6","mode	":1,"lea	pseco	nds":1	.8}		
{"class":"TPV","device":"/dev/ttySTM6","mode	":1,"lea	pseco	nds":1	.8}		
{"class":"TPV","device":"/dev/ttySTM6","mode	":1,"lea	pseco	nds":1	.8}		

									-Seen	36/Useo	14-
Time	2023-09-22	LT03:29:	28.000Z	(18)	GNS	S	PRN	Elev	Azim	SNR	Use
Latitude	22.5	7353983	N		GP	5	5	37.0	54.0	38.0	Y
Longitude	113.94	1796800	E		GP	11	11	18.0	134.0	39.0	Y
Alt (HAE,	MSL) 364	501,	373.360) ft	GP	13	13	44.0	31.0	45.0	Y
Speed	0.03	l mph			GP	15	15	67.0	332.0	45.0	Y
Track (tru	ıe, var):		n/a	deg	GP	18	18	33.0	325.0	41.0	Y
Climb	-19.69) ft/min	1		GP 2	20	20	19.0	84.0	40.0	Y
Status	3D FIX	(58 sec	cs)		GP	23	23	17.0	300.0	37.0	Υ
Long Err	(XDOP, EPX)	0.51,	+/- 25.2	2 ft	GP 2	24	24	43.0	167.0	42.0	Υ
Lat Err	(YDOP, EPY)	0.52,	+/- 25.6	6 ft	GP 2	29	29	41.0	240.0	43.0	Y
Alt Err	(VDOP, EPV)	0.76,	+/- 57.3	3 ft	SB12	20	33	50.0	323.0	46.0	Y
2D Err	(HDOP, CEP):	0.50,	+/- 31.2	2 ft	SB1	21	34	60.0	129.0	45.0	Y
3D Err	(PDOP, SEP):	0.91,	+/- 56.7	/ ft	SB12	21	34	19.0	164.0	40.0	Y
Time Err	(TDOP):	0.78			SB12	23	36	9.0	139.0	37.0	Y
Geo Err	(GDOP):	1.66			SB14	47	60	45.0	243.0	44.0	Y
Speed Err	(EPS)	+/- 35.	.0 mph		GP	17	17	0.0	0.0	21.0	Ν
Track Err	(EPD)	n/a			SB1	25	38	0.0	0.0	45.0	Ν
Time offse	et	-748330	0841.1484	30094	SB12	26	39	0.0	0.0	46.0	Ν
sGrid Squar	re	0L62xr	າ37		SB1	27	40	20.0	257.0	38.0	Ν
└─More					More	e	. q——				
11.1000,"alt	11.1000,"altMSL":113.8000,"alt":113.8000,"epx":7.676,"epy":7.814,"epv":17.480,"m										
agvar":-3.0,	"speed":0.003	3,"climb	o":-0.100	,"eps	:15	.63	,"epc	":34.9	6,"geo	idSep":	:-2.
00."eph":9.5	500."sep":17.2	290}									

4.7. CAN

Module model: SPC582B60E1, connected through UART. It uses USART6, which corresponds to /dev/ttySTM7

Set the baud rate (default) to 115200, and because the module serial port data is binary, the parameter raw needs to be used when using the stty tool to set it. Otherwise, the default tty attribute may overwrite the read data, such as the enabled icrnl attribute by default, which will overwrite 0x0D with 0x0A.

\$ stty -F /dev/ttySTM7 ispeed 115200 ospeed 115200 cs8 raw

PG3 CAN MCU Power supply output enable :

\$ gpioset 6 3=1

PA4 5V voltage increase enable :

\$ gpioset 0 4=1

On Linux system, the read and written binary data can be edited by using the hexedit tool, and then read and write by using the dd tool.

For example, write the binary command to be sent into the file out:

\$ touch out

\$ hexedit out

00000000	F5	B 3	10	01	3B	F6					 ;.
00000010											
00000020											
00000030											
00000040											
00000050											
00000060											
0000070											

Start reading in advance (at the background) and write the read data to the in file,

\$ dd if=/dev/ttySTM7 of=in &

Send the out file, \$ dd of=/dev/ttySTM7 if=out

Use the hexdump tool to display the read binary data.

\$ hexdump -C in

root@Queclink-GV850:/tmp# hexdump -C in		
00000000 f5 b4 14 01 49 30 08 0d a8 f6	I0	
000000a		
root@Queclink-GV850:/tmp#		

The module command/protocol description is detailed in the document "[22-12-12] CAN-Logistic v3 protocol XON-XOFF". The module provides three configurable GPIO outputs, where OUT2 is connected to PG1 of the MPU and can notify the MPU of events. The testing method is as follows:

Query current PG1 status:

\$ gpioget 6 1

1

Use example_external_can tool to make OUT2 output 0, \$ example_external_can 0x402 STEP Read version, write len=6: F5 B3 10 01 3B F6 read len=10: F5 B4 14 01 49 30 08 0D A8 F6 STEP GPIO output1~3 disactivated, write len=9: F5 B3 43 02 00 00 20 E7 F6 read len=9: F5 B4 43 02 00 6E 00 98 F6

Query PG1 status again and it is updated,

\$ gpioget 6 1

0

nake OUT2 output 1,
example_external_can 0x802
TEP
Read version, write len=6:
5 B3 10 01 3B F6
ead len=10:
5 B4 14 01 49 30 08 0D A8 F6
TEP
GPIO output2 activated, write len=9:
5 B3 43 02 40 00 20 A7 F6
ead len=9:
5 B4 43 02 00 6E 00 98 F6
Query current PG1 status, and it goes back to the beginning status,
Sigpioget 6 1
piomon can also be used to monitor PG1,
s gpiomon 6 1
event: RISING EDGE offset: 1 timestamp: [2915.299024187]
event: FALLING EDGE offset: 1 timestamp: [2915.317364562]

The CAN module can serve as a wake-up source for system sleep. On hardware, OUT2 is connected to PG1 of MPU as the wake-up source. The OUT2 function is configurable, with the default function being 'vehicle's buses active',

6.6.9. Setting outputs functions

CAN-Logistic has three binary outputs (bistable), which can provide various signals related to vehicle state. Default outputs functions are:

- ignition on for OUT1
- vehicle's buses active for OUT2
- notification about events for OUT3

Outputs may be positive (high level voltage when active), or negative (shorted to ground when active) - check hardware information.

The module will enter sleep on its own and pull PG1 up. When the module is awakened, pressing the CAN sync button will pull PG1 down,

\$ gpiomon 6 1

event: FALLING EDGE offset: 1 timestamp: [156339.620835030]

4.8. RS232/RS485

There are 2 RS232 and 1 RS485.

4-pin	Hardware	Device	Description
RS485	USART5	/dev/ttySTM5	/
RS232_1	USART1	/dev/ttySTM1	/
RS232_2	USART2	/dev/ttySTM2	/

The front view of the 4-pin RS485 connector is as follows:

Pin	Pin Name	Cable Color	Description	Device Nodes	Remarks
1	GND	Black	External Accessory Ground	/	/
2	DC5V_3	Red	External Accessory Power 250mA Max	/	/
3	485B	Orange white	RS485B	/	/
4	485A	Orange black	RS485A	/	/

The front view of the 4-pin RS232 connectors is as follows:

3	1
4	2

Pin	Pin Name	Cable Color	Description	Device Nodes	Remarks
1	GND	Black	External Accessory Ground	/	/
2	DC5V_1	Red	External Accessory Power 250mA Max	/	/
3	TX232_1	Gray black	UART TXD1 RS232	/	/
4	RX232_1	Gray white	UART RXD1 RS232	/	/

4.9. GPIO&ADC&1-WIRE

There are 10 GPIO, 1 1-wire bus and 4 ADC inputs.

The front view of the 16-pin connector is as follows:

Descriptions of IOs and ADCs are as follows:

Pin	Pin Name	Cable Color	Description	Device Nodes	Remarks
1	AIN1	Brown/white	Analog Input1 0~32V	<pre>/sys/bus/iio/devices/iio:d evice1/in_voltage_scale /sys/bus/iio/devices/iio:d evice1/in_voltage10_raw</pre>	Volt=scale*raw*(18+20 0)/18 Unit: mV
2	DIN2	Orange/black	Negative trigger input2	gpiochip2 9	\$ gpioget gpiochip2 9
				/sys/bus/iio/devices/iio:d	Volt=scale*raw*(18+20
3	AIN2	Red/brown	Analog Input2 0~32V	evice1/in_voltage_scale	0)/18
				/sys/bus/iio/devices/iio:d	Unit: mV

				evice1/in_voltage4_raw	
4	DIN3	Blue	Negative trigger input3	gpiochip2 10	\$ gpioget gpiochip2 10
5	AIN3	White/black	Analog Input3 0~32V	/sys/bus/iio/devices/iio:d evice0/in_voltage_scale /sys/bus/iio/devices/iio:d evice0/in_voltage2_raw	Volt=scale*raw*(18+20 0)/18 Unit: mV
6	DIN4	Black/brown	Negative trigger input4	gpiochip2 11	\$ gpioget gpiochip2 11
7	AIN4	Gray/black	Analog Input4 0~32V	/sys/bus/iio/devices/iio:d evice1/in_voltage_scale /sys/bus/iio/devices/iio:d evice1/in_voltage0_raw	Volt=scale*raw*(18+20 0)/18 Unit: mV
8	DIN5	Pink	Negative trigger input5	gpiochip2 12	\$ gpioget gpiochip2 12
9	OUT3	Brown	Open drain output3	gpiochip8 0	\$ gpioset gpiochip8 0=value
10	OUT5	Orange	Open drain output5	gpiochip8 3	\$ gpioset gpiochip8 3=value
11	OUT2	Yellow	Open drain output2	gpiochip6 15	\$ gpioset gpiochip6 15=value
12	OUT4	White	Open drain output4	gpiochip8 2	\$ gpioset gpiochip8 2=value
13	1W_DATA	Green	1-WIRE data	1	/
14	GND	Black	Ground	1	/
15	VDD_1WIRE	Red white	Power for 1-wire devices 3.3V	1	/
16	AGND	Black gray	Analog Ground	/	/

The front view of the 10-pin connector is as follows:

Descriptions of IOs and ADCs are as follows:

Pin	Pin Name	Cable Color	Description	Device Nodes	Remarks
1	DCIN	Red	DC Power 8-32V	/	/
2	GND	Black	Ground	/	/
3	IGN	White	Positive trigger input	gpiochip0 6	\$ gpioget gpiochip0 6
4	DIN1	Orange	Negative trigger input1	gpiochip2 8	\$ gpioget gpiochip2 8
5	K-LINE	Pink	ISO K Line	/	/
6	OUT1	Yellow	Open drain output1 with latch	gpiochip0 3	\$ gpioset gpiochip0 3=value
7	CAN1L	Brown black	CAN Bus CAN1L		/
8	CAN1H	Brown white	CAN Bus CAN1H		- /
9	CAN2L	Blue	CAN Bus CAN2L	/	/
10	CAN2H	Brown	CAN Bus CAN2H	/	/

The STM32MP133 platform can use the gpio tools tool to print GPIO group information.

\$ gpiodetect

gpiochip0 [GPIOA] (16 lines) gpiochip1 [GPIOB] (16 lines) gpiochip2 [GPIOC] (16 lines) gpiochip3 [GPIOD] (16 lines) gpiochip4 [GPIOE] (16 lines) gpiochip5 [GPIOF] (16 lines) gpiochip6 [GPIOG] (16 lines) gpiochip7 [GPIOH] (15 lines) gpiochip8 [GPIOI] (8 lines)

# gpioinf	0				
gpiochip	0 - 16 li	ines:			
	line	0:	"PAO"	kernel	input active-high [used]
	line	1:	"PA1"	unused	input active-high
	line	2:	"PA2"	kernel	input active-high [used]
	line	3:	"PA3"	unused	input active-high
	line	4:	"PA4"	unused	input active-high
	line	5:	"PA5"	kernel	input active-high [used]
	()				

4.10. Power&Battery

Main power function and interface description are as follows:

Function	Device Nodes	Remarks
Voltage detection	/sys/bus/iio/devices/iio:device1/in_voltage_scale	Volt=scale*raw*(82+1000)/82
	/sys/bus/iio/devices/iio:device1/in_voltage2_raw	Unit: mV

Backup battery power function and interface description are as follows:

Function	Device Nodes	Remarks
Valtage detection	/sys/bus/iio/devices/iio:device1/in_voltage_scale	Volt=scale*raw*(200+200)/200
voltage detection	/sys/bus/iio/devices/iio:device1/in_voltage1_raw	Unit: mV
Power supply On		On
Tower supply on	aniochin5 12	\$ gpioset gpiochip5 12=1
Power supply Off	gpiocinps 12	Off
		\$ gpioset gpiochip5 12=0
Charging Start		Start
	gniochin() 11	\$ gpioset gpiochip0 11=1
Charging Stop	Shocubo II	Stop
enalging etcep		\$ gpioset gpiochip0 11=0
		\$ gpioget gpiochip6 12
Charging Status	gpiochip6 12	0, Charging
		1, Not Charging
Charging IC On		On
		\$ gpioset gpiochip0 13=1
		Off
		\$ gpioset gpiochip0 13=0
		The power supply of the ammeter IC is
	gpiochip0 13	associated with the power supply
		input of the battery charging
Charging IC Off		management IC. It is necessary to
		enable it first (backup battery on,
		charging ammeter IC on), then enable
		charging (backup battery charging
		starts), and then detect the charging
		current
Charging Current	/sys/bus/iio/devices/iio:device1/in_voltage_scale	Current=scale*raw
	/sys/bus/iio/devices/iio:device1/in_voltage16_raw	Unit: mA
Battery		
Temperature		On
Detection On	gpiochip6 13	\$ gpioset gpiochip6 13=1
Battery		Off
Temperature		\$ gpioset gpiochip6 13=0
Detection Off		
Battery	/sys/bus/iio/devices/iio:device1/in_voltage_scale	Volt=scale*raw*(10+10)/10

Temperature	/sys/bus/iio/devices/iio:device1/in_voltage15_raw	Unit: mV
-------------	---	----------

4.11. LED

There are 3 LEDs, which are controlled by GPIO.

Pin Name	LED Name	Description
		On, PA8 output high
	CDS signal LED	\$ gpioset 0 8=1
PAo	GPS Signal LED	Off, PA8 output low
		\$ gpioset 0 8=0
	Network signal LED	On, PE6 output high
DEC		\$ gpioset 4 6=1
PEO		Off, PE6 output low
		\$ gpioset 4 6=0
	Power supply status LED	On, PG11 output high
DC11		\$ gpioset 6 11=1
PGII		Off, PG11 output low
		\$ gpioset 6 11=0

5. System Sleep

This section introduces the low-power design of the stm32mp133 platform and the control methods for entering low-power. MPU provides multiple energy consumption operation modes,

The wake-up sources supported in each mode are different, as shown in the following table,

Platform mode	Available wakeup sources
Stop	BOR, PVD, AVD, Vbat mon, Temp mon, HSE CSS, LSE CSS, RTC, TAMP, USBH, OTG, ETH, USART, I2C, SPI, DTS, LPTIM, IWDG, GPIO, Wakeup pins (from PWR)
LPLV-Stop LPLV-Stop2	BOR, PVD, AVD, Vbat mon, Temp mon, LSE CSS, RTC, TAMP, USART, I2C, SPI, DTS, LPTIM, IWDG, GPIO, Wakeup pins (from PWR)
Standby	BOR, Vbat mon, Temp mon, LSE CSS, RTC, TAMP, IWDG, Wakeup pins (from PWR)

That is to say, the low-power mode MPU can enter depends on the wake-up source required by the application scenario,

Wake-up source	Linux command	STM32MP13x device system deepest power mode	System DDR	Linux kernel state	Power consuming	Wake- up time	Comment/Application guideline
Group 1: USB, CEC, ETH	"mem"	Stop or LP- Stop	SR (VTT off)	"Suspend-to-ram"	Medium	Medium	LP-Stop: driving external PWR_LP/ PWR_ON permits designing the custom strategy for the external regulator. Typical application is to switch off DDR3 termination supply (VTT) (most likely not needed in 16- bit DDR design)
Group 2: PVD, AVD, DTS, USART, I ² C, SPI, LPTIM, GPIOs	"mem"	LPLV-Stop or LPLV-Stop2	SR (VTT off)	"Suspend-to-ram"	Low	Medium	LPLV-Stop(2): save power thanks to the power retention. Suitable for applications with aggressive power constraints and tolerant with limitations of wake- up source (refer to Table 4. Low-power mode wake-up capabilities of the system)
Group 3: BOR, Vbat mon, Temp	"mem"	Standby	SR	"Suspend-to-ram"	Low	Medium	Standby saves more power at the expense of wake-up time
Temp mon, LSE CSS, RTC, TAMP, wake-up pins	"shutdown"	Off/VBAT	Off	Shutdown	Very low	High	-

Table 9. Deepest power mode per wake-up source group and equivalence between Linux and STM32MP13x device system power modes

According to the GV850 specifications and application scenarios, it is required to realize modes LPLV-STOP/LPLV-STOP2 and Off/VBAT. OpenSTLinux implements a power management mechanism, as shown in the following figure,

Only by using the provided Linux sysfs interface, the configuration and enabling/disabling of wake-up sources and initiating of state/mode switchover request can be done. By calling the PWR driver to control the hardware PWR, adjust the VDDCORE and VDDCPU voltages according to the following table. After both voltages meet the conditions, the MPU as a whole can enter the corresponding energy consumption state.

Due to differences in power management hardware between GV850 and the official demo board, GV850 uses separate components instead of power management IC (PMIC), and GPIO is used for PWR control instead of I2C interface. Therefore, GPIO needs to be adapted and adopted in the PWR driver.

Supply name	Control register (LP mode) /@	LP-Stop	LPLV-Stop	LPLV-Stop2	Standby with DDR SR	Standby w/o DDR SR		
VDDCORE	BUCK4/0x33	0x69 (1.25 V)	0x33 (0.9 V)	0x33 (0.9 V)	0x30 (off)			
VDDCPU	BUCK1/0x30	0x69 (1.25 V)	0x33 (0.9 V)		0x30 (off)			
V _{DD_DDR}	BUCK2/0x31		0x7A (off)					
V _{DD}	BUCK3/0x32		0xD9 (3.3 V)					
V _{REF_DDR}	VREFDDR/0x34			0x1		0x0 (off)		
V _{DDA}	LDO1/0x35		0x51 (2.9 V)		0x50	(off)		
V _{DD_USB}	LDO4/0x38		0x1 (3.3 V)		0x0	(off)		
V _{DD_SD}	LDO5/0x39	0x51 (2.9 V)			0x50 (off)			

Table 8. STPMIC1x (LP mode) programming: LP-Stop LPLV-Stop and Standby mode

Wake-up source table,

Name	Pin	Location
RTC		Inside MPU
UART		Interface
LTE	GPIO PD3	External module
USB	GPIO PD7	Interface
CAN	GPIO PG1	External module
BLE	GPIO PG4	External module
G-sensor		External module

5.1. RTC Wake-up

It is enabled by default. By using the rtcwake tool, scheduled wake-up can be completed. The usage method is as follows:

Check the current system time,

\$ date

ſ

Wed Sep 27 14:36:57 UTC 2023

Initiate sleep and wake up at 14:39,

\$ rtcwake -t `date -d 14:39 +%s` -m mem -d /dev/rtc0

- wakeup from "mem" at Wed Sep 27 14:38:58 2023
- [825.648590] PM: suspend entry (deep)
- [825.651151] Filesystems sync: 0.000 seconds
- [825.662977] Freezing user space processes ... (elapsed 0.001 seconds) done.
- [825.670398] OOM killer disabled.
- [825.673390] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
- 825.680988] printk: Suspending console(s) (use no_console_suspend to debug)

Or directly specify the sleep interval,

\$ rtcwake -s 60 -m mem -d /dev/rtc0

wakeup from "mem" at Sat Jan 1 22:54:38 2000

- [27.544938] PM: suspend entry (deep)
- [27.547565] Filesystems sync: 0.000 seconds
- [27.559313] Freezing user space processes ... (elapsed 0.001 seconds) done.
- [27.566787] OOM killer disabled.
- [27.569771] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
- [27.577385] printk: Suspending console(s) (use no_console_suspend to debug)

Will wake up after 60 seconds of sleep by itself and return to the system command prompt.

- 27.584948] inv-mpu-iio-spi spi0.0: icm42600 suspend
- [27.588715] dwc2 49000000.usb-otg: suspending usb gadget g_ether
- [27.593181] Disabling non-boot CPUs ...
- [27.597019] dwc2 49000000.usb-otg: resuming usb gadget g_ether
- [27.602441] nand: SDR timing mode 4 not acknowledged by the NAND chip

[27.604035] inv-mpu-iio-spi spi0.0: icm42600 resume

[27.635996] OOM killer enabled.

- [27.639113] Restarting tasks ... done.
- [27.657140] PM: suspend exit

root@Queclink-GV850:~#

5.2. UART Wake-up

It is disabled by default. Taking the system console UART device ttySTMO as an example to show the enabling method,

Check the default value,

\$ cat /sys/devices/platform/soc/40010000.serial/power/wakeup

disabled

\$ cat /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup

disabled

Modify the wake-up source to enable state,

\$ echo enabled > /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup

\$ echo enabled > /sys/devices/platform/soc/40010000.serial/power/wakeup

Initiate a sleep request,

\$ echo mem > /sys/power/state

- [192.680917] PM: suspend entry (deep)
- [192.695818] Filesystems sync: 0.012 seconds
- [192.699298] Freezing user space processes ... (elapsed 0.001 seconds) done.
- [192.706747] OOM killer disabled.
- [192.709813] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.

[192.717339] printk: Suspending console(s) (use no_console_suspend to debug)

During sleep, if there are no other wake-up sources, it will wake up when UART receives data and return to the system command line login.

- [192.725008] inv-mpu-iio-spi spi0.0: icm42600 suspend
- [192.728334] dwc2 49000000.usb-otg: suspending usb gadget g_ether
- [192.732793] Disabling non-boot CPUs ...
- [192.736417] dwc2 49000000.usb-otg: resuming usb gadget g_ether
- [192.741961] nand: SDR timing mode 4 not acknowledged by the NAND chip
- [192.743202] inv-mpu-iio-spi spi0.0: icm42600 resume
- [192.775183] OOM killer enabled.
- [192.778435] Restarting tasks ... done.
- [192.783454] PM: suspend exit

^Z

Welcome to Buildroot

Queclink-GV850 login:

6. Example of Codes

In order to facilitate developers to familiarize themselves with and use the modules on the device, example source code for some module interfaces is provided for reference.

6.1. example_ble

It demonstrates how to send commands to the BLE module and receive response data. For more information on the module, please refer to the "BLE" section.

The method is as follows, with the main steps being to enable power supply and test command:

\$ gpioset 4 15=1

Use the tool to send the AT+F=1 command to read the BLE firmware version. Since it has just started up, the response data is a startup message. Please ignore it,

\$ example_ble AT+F=1
recv from BLE:
+ACK:X,99,01.01,64F4193F0C000000

Use the same command again, it returns the correct response data, including BLE firmware version information,

\$ example_ble AT+F=1
recv from BLE:
+ACK:F,1,01.01,OK

Query the BOOT APP version of the BLE module, \$ example_ble AT+F=17,0 recv from BLE: +ACK:F,17,0,NABE5_BT_BOOTR00A01V01,OK \$ example_ble AT+F=17,1 recv from BLE: +ACK:F,17,1,NABE5_BT_R00A02V03,OK

6.2. example_formula_can

It demonstrates how to send commands to the CAN module and receive response data. For more information on the module, please refer to the "CAN" section.

The method is as follows, with the main steps being to set baud rate, enable power supply and test command:

\$ stty -F /dev/ttySTM7 ispeed 115200 ospeed 115200 cs8 raw

\$ gpioset 6 3=1

\$ gpioset 0 4=1

Embedded commands inside the tool, parameters (OR values) can be used to control the sequence of the commands to be executed,

\$ example_external_can
Usage:

example_external_can <testing mask>

Testing mask:

- -Read SN, --0x01 -Read version, --0x02 -Read boot version, --0x04 -Read INPUT_3 voltage, --0x08 -Read V_IN voltage, --0x10 -Enter develop mode, --0x20
- -CAN loop test, --0x40
- -K-Line test, --0x80

Execute Read version command,

\$ example_external_can 0x02
STEP
Read version, write len=6:
F5 B3 10 01 3B F6
read len=10:
F5 B4 14 01 49 30 08 0D A8 F6
Execute Read version and CAN loop test commands,
\$ example_external_can 0x42
STEP
Read version, write len=6:
F5 B3 10 01 3B F6
read len=10:
F5 B4 14 01 49 30 08 0D A8 F6

STEP CAN loop test, write len=9: F5 B3 43 02 00 80 10 77 F6 read len=9: F5 B4 43 02 00 6E 00 98 F6

6.3. example_modem_at

It demonstrates how to send commands to the LTE module and receive response data. For more information on the module, please refer to the "LTE" section.

The method is as follows, with the main steps being to set baud rate, enable power supply, power on the module, turn off command echo and test command:

\$ stty -F /dev/ttySTM3 ispeed 115200 ospeed 115200 cs8 -icrnl -isig -icanon -echo -echoe
\$ gpioset 0 15=1
\$ gpioset 5 5=1
\$ gpioset 5 5=0

Use the tool to send the ATEO command to turn off echo,

\$ example_modem_at ATE0
ATE0

ОК

Send the AT+GMR command to query the firmware version of the LTE module, \$ example_modem_at AT+GMR EG915UEUABR02A05M08

ОК

6.4. example_gsensor

Demonstrates how to provide a sysfs interface through the driver to complete the initialization, data collection, and command testing of the IMU device:

```
$ example_gsensor
Usage:
      test-sensors-sysfs [-d <device_no>] [-a <rate>] [-g <rate>] [-c]
Options:
     -h, --help
               Show this help and quit.
     -d, --device
               Choose device by numero.
     -a, --accel
               Turn accelerometer on with ODR (Hz).
     -g, --gyro
               Turn gyroscope on with ODR (Hz).
     -c, --convert
               Show data after unit conversion (m/s<sup>2</sup>, rad/s)
     -b, --batch
               Set batch timeout in ms.
Version:
     1.1.0
```

For example, the sampling frequency is 100Hz,

•										
\$ example_gsensor -d 2 -a 100 -g 100										
Accel body (LSB)	,	+113,	+13,	+4077,	17478588377202,	176.818,	1.128			

Gyro	body (LSB) ,	-4,	+5,	+1,	17478588342172,	16.954,	1.163
Acce	body (LSB) ,	+114,	+13,	+4082,	17478598377202,	10.000,	1.338
Gyro	body (LSB) ,	-3,	+5,	+1,	17478598307142,	9.965,	1.408
Acce	body (LSB) ,	+111,	+8,	+4084,	17478608377202,	10.000,	1.176
Gyro	body (LSB) ,	-5,	+6,	+1,	17478608272112,	9.965,	1.281
Acce	body (LSB) ,	+111,	+12,	+4094,	17478618377202,	10.000,	1.226
Gyro	body (LSB) ,	-4,	+4,	+1,	17478618237082,	9.965,	1.366
Accel	body (LSB) ,	+114,	+14,	+4092,	17478628377202,	10.000,	1.109
Gyro	body (LSB) ,	-4,	+5,	+0,	17478628202052,	9.965,	1.284

Sampling results after unit conversion,

\$ example_gsensor -d 2 -a 100 -g 100 -c											
Accel b	ody (m/s^2),	+0.270545,	+0.021548,	+9.761160,	17568890862843,	169.503,	1.343				
Gyro	body (rad/s),	-0.005326,	+0.005326,	+0.001065,	17568890827813,	9.549,	1.378				
Accel b	ody (m/s^2),	+0.270545,	+0.028730,	+9.806650,	17568900862843,	10.000,	1.376				
Gyro	body (rad/s),	-0.004261,	+0.005326,	+0.001065,	17568900792783,	9.965,	1.446				
Accel b	ody (m/s^2),	+0.268151,	+0.021548,	+9.782708,	17568910862843,	10.000,	1.426				
Gyro	body (rad/s),	-0.005326,	+0.005326,	+0.000000,	17568910757753,	9.965,	1.531				
Accel b	ody (m/s^2),	+0.265756,	+0.023942,	+9.787497,	17568920862843,	10.000,	1.423				
Gyro	body (rad/s),	-0.005326,	+0.006392,	+0.000000,	17568920722723,	9.965,	1.563				