
GV850 Software Development Guide 

 

 

 

 

 

 

 

 

GV850 Software Development Guide 
Version: 1.01 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



GV850 Software Development Guide 

Document Title GV850 Software Development Guide 

Version 1.01 

Date 2023-11-27 

Status Released 

General Notes 

Queclink offers this information as a service to its customers, to support application and engineering efforts that use the 

products designed by Queclink. The information provided is based upon requirements specifically provided to Queclink by 

the customers. Queclink has not undertaken any independent search for additional relevant information, including any 

information that may be in the customer’s possession. Furthermore, system validation of this product designed by Queclink 

within a larger electronic system remains the responsibility of the customer or the customer’s system integrator. All 

specifications supplied herein are subject to change. 

Copyright 

This document contains proprietary technical information which is the property of Queclink. Copying of this document, 

distribution to others or using or communication of the contents thereof is forbidden without express authority. Offenders 

are liable to the payment of damages. All rights are reserved in the event of a patent grant or the registration of a utility 

model or design. All specifications supplied herein are subject to change without notice at any time. 

Copyright ©  Queclink Wireless Solutions Co., Ltd. 2023 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Queclink 

Confidential



GV850 Software Development Guide 

Contents 

0. Revision History ..................................................................................................................................................................... 1 

1. Overview ................................................................................................................................................................................ 2 

2. Platform Development ........................................................................................................................................................... 5 

2.1. devicetree ................................................................................................................................................................... 5 

2.2. bootchain .................................................................................................................................................................... 5 

2.3. Compilation Method ................................................................................................................................................... 6 

2.4. Programming .............................................................................................................................................................. 7 

USB OTG ..................................................................................................................................................................... 7 

OTA ............................................................................................................................................................................. 8 

3. Application Development ...................................................................................................................................................... 9 

3.1. Debugging Tool ........................................................................................................................................................... 9 

4. Interface and Driver ............................................................................................................................................................. 10 

4.1. LTE ............................................................................................................................................................................. 10 

4.2. Watchdog .................................................................................................................................................................. 13 

4.3. RTC ............................................................................................................................................................................ 14 

4.4. BLE ............................................................................................................................................................................ 14 

4.5. G-sensor .................................................................................................................................................................... 15 

4.6. GPS ............................................................................................................................................................................ 16 

4.7. CAN ........................................................................................................................................................................... 20 

4.8. RS232/RS485 ............................................................................................................................................................. 23 

4.9. GPIO&ADC&1-WIRE .................................................................................................................................................. 24 

4.10. Power&Battery ....................................................................................................................................................... 27 

4.11. LED .......................................................................................................................................................................... 28 

5. System Sleep ........................................................................................................................................................................ 29 

5.1. RTC Wake-up ............................................................................................................................................................. 32 

5.2. UART Wake-up .......................................................................................................................................................... 33 

6. Example of Codes ................................................................................................................................................................. 34 

6.1. example_ble .............................................................................................................................................................. 34 

6.2. example_formula_can .............................................................................................................................................. 34 

6.3. example_modem_at ................................................................................................................................................. 35 

6.4. example_gsensor ...................................................................................................................................................... 36 

Queclink 

Confidential



GV850 Software Development Guide 

1 

0. Revision History 

Version Date Author Description of Change 

1.00 2023-09-25 Alex Liao Initial 

1.01 2023-11-21 Alex Liao Added more information to make the file more complete. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Queclink 

Confidential



GV850 Software Development Guide 

2 

1. Overview 

 

MPU STM32MP133A 

RAM 128MB, DDR3 or above 

FLASH memory 128MB SPI or above 

Status LEDs 1 x Power, 1 x CEL, 1 x GNSS LED, 1 x CAN/Tachograph 

SIM 1 x SIM card slot or eSIM 

Modem 

Support Cat 1  

LTE-FDD: B1/B3/B5/B7/B8/B20/B28 

GSM: B2/B3/B5/B8 

RS232 or RS485 
2 x RS232, 300-115200 baud rate 

1 x RS485, 300-115200 baud rate/Half Duplex (2 wires) 

I/O 

1 x positive trigger input for ignition detection 

5 x negative trigger inputs 

4 x analog input (0-32V) 

5 x digital output, open drain, 150mA max drive current 

1 DC 5V output for temperature sensor 

3.5V outputs for external accessories 

CAN 

CAN1H/CAN1L, support reading CAN bus data in heavy (J1939/FMS) and light 

vehicle 

CAN2H/CAN2L, support reading and download tachograph data, support reading 

CAN data in J1708 and OBDII 

K-Line Connect D8 of tachograph for live data reading 

Type-C USB Used for configuration, upgrade and debug 

1-Wire Interface Support 1-wire temperature sensor and iButton driver ID 

GNSS u-box all-in-one GNSS receiver, support GPS, Glonass, Galileo, Beidou 

BLE BLE5.2 

Battery Li-Polymer, 250mAh 

G-sensor 6-axis motion, motion detection, harsh driving detection, shock detection 

Reset button Reset button to reset system 

Cellular Antenna Internal or external  

GNSS Antenna Internal or external  

BLE Antenna Internal 

Queclink 

Confidential



GV850 Software Development Guide 

3 

Sleep Current < 10mA 

Firmware/configuration 

Operating system Linux OS, Kernel 5.15.67 

Power 

Connector Pin connector 

Input voltage range 8 – 32 VDC, reverse polarity protection; surge protection >31 VDC 10us max 

Power consumption 5W (average) 

Physical Specification 

Dimensions 123*80*21mm (L*W*H) 

Weight 150g 

Mounting options Flat surface placement 

Operating Environment 

Operating temperature -30 °C to 75 °C

Operating humidity 10% to 90% RH non-condensing 

Ingress Protection Rating IP30 

Queclink 

Confidential



GV850 Software Development Guide 

4 

The hardware block diagram is as following: 

Two construction methods, buildroot and yocto, and corresponding SDK source codes, are provided. The positioning from 

Linux of these two construction methods differs (though both are commonly used in embedded systems, but there are 

differences in efficiency and usage methods): 

➢ Buildroot, which builds a more streamlined and simple system and is suitable for devices with limited hardware

resources (mainly flash);

➢ Yocto, which builds a system with rich features and supports more complete hardware, including UI, audio and video

software stacks, requiring a larger flash size.

Queclink 

Confidential



GV850 Software Development Guide 

5 

2. Platform Development

At present, source codes for building systems based on buildroot are provided, which can build and package complete system 

images. 

2.1. devicetree 

The first step in developing STM32MP1 platform devices is to adapt a devicetree based on its hardware. Moreover, because 

the devicetree is used in each module of bootchain, it is a complex and cumbersome operation to ensure that each module 

obtains the correct devicetree during compilation. Therefore, ST has provided the STM32CubeMX tool to provide 

visualization, assistance, and configuration wizards that can automatically generate the devicetree required by each module. 

The provided buildroot source codes already contain the adapted devicetree. 

2.2. bootchain 

The STM32MP133 platform is based on the ARM Cortex-A7 architecture, and the boot process is similar to other ARM 

architectures. It is mainly divided into the following stages:  

ROM code 

FSBL (First stage bootloader) TF-A 

SSBL (Second-stage bootloader), u-boot 

Please search “boot chain” in following link to get more information. 

➢ https://wiki.stmicroelectronics.cn/stm32mpu/wiki/Main_PageQueclink 

Confidential

https://wiki.stmicroelectronics.cn/stm32mpu/wiki/Main_Page


GV850 Software Development Guide 

6 

After understanding the startup process of STM32 ARM, it’s known that the actual module relationship is: 

2.3. Compilation Method 

To use the Buildroot, there must be a Linux distribution installed on the workstation. Any reasonably recent Linux distribution 

(Ubuntu, Debian, Fedora, Redhat, OpenSuse, etc.) will work fine. Then, a small set of packages needs to be installed as 

described in the System Requirements section of Buildroot Manual. 

For Debian/Ubuntu distributions, use the following command to install the necessary packages: 

$ sudo apt-get install -y debianutils sed make binutils build-essential gcc g++ \ 

bash patch gzip bzip2 perl tar cpio unzip rsync file bc git \ 

   wget python3 libssl-dev libncurses-dev 

After finishing installation, extract source tarball that is provided: 

$ tar zxvf GV850_buildroot_dd981da1.tar.gz 

Go to the Buildroot directory:  

$ cd GV850_buildroot_dd981da1/buildroot/ 

And then, configure the system you want to build by using the defconfigs provided in this BR2_EXTERNAL tree. 

$ make BR2_EXTERNAL=../buildroot-external-st st_stm32mp133a_queclink_GV850CEU_defconfig 

There are two pieces of information are provided: 

1. The path to BR2_EXTERNAL tree, which is provided side-by-side to the Buildroot repository.

Queclink 

Confidential



GV850 Software Development Guide 

7 

2. The name of the Buildroot configuration.

If there is the need to further customize the Buildroot configuration, please run ‘make menuconfig’, but for the first

build, it is recommended to keep the configuration unchanged so that it can be verified that everything is working. 

Start the build: 

$ make V=s 

It might take between 30 and 60 minutes depending on the configuration that is chosen and how powerful the machine 

is. All software packages for building the entire Linux system for the STM32MP1 platform (e.g. cross-compilation toolchain, 

firmware, bootloader, Linux kernel, root filesystem) are already included, no downloading is needed unless default 

configuration is customized. 

Buildroot might need to be authorized to root (or sudo) in order to compile some packages (related to Python 3) properly. 

If some permission failures are met, please retry: 

$ sudo make V=s 

When the building is done, it will output images in the directory below, including u-boot, kernel, rootfs binary files. 

$ cd output/images 

Following files in this directory are necessary for flashing, please copy and prepare for flashing. 

├── fip.bin 

├── flash.tsv 

├── metadata.bin 

├── rootfs.ubi 

└── tf-a-stm32mp133a-gv850ceu-mx.stm32 

2.4. Programming 

The device supports both USB OTG programming and OTA firmware updating. 

USB OTG 

After successfully building with Buildroot, the complete files required for programming can be obtained. 

├── fip.bin // FIP 

├── flash.tsv  // Program partitions configuration table 

├── metadata.bin 

├── rootfs.ubi // Including kernel and file system rootfs 

└── tf-a-stm32mp133a-gv850ceu-mx.stm32 // TF-A 

The device first enters DFU mode. And then use the STM32CubeProgrammer tool to erase and programm the device. The 

method and steps are as follows: 

1. Use the USB+UART 2-in-1 cable provided along with the device, open the COM device on a PC using the UART tool, and

the baud rate is 115200bps;

2. Power on the device, the COM starts printing the startup log, and then quickly press any key on the keyboard. The startup

process will be interrupted and it requires to enter the u-Boot command. Then, enter the following command to enter DFU

mode;

STM32MP> stm32prog usb 0

Queclink 

Confidential



GV850 Software Development Guide 

8 

3. Connect the USB of the cable to the PC, click the right button of the mouse to click refresh, after automatically scanning

and finding the device that has entered DFU mode, and then click "Connect"

4. Select "Open file" to load the flash. tsv file from the released firmware, and note that select the correct path for "Browse";

3. Click "Download" to start programming. After successful programming, power off the device, unplug and reinsert the USB

Type-C cable, power on the device, and the device enters the boot process.

OTA 

Still under development. 

Queclink 

Confidential



GV850 Software Development Guide 

9 

3. Application Development 

In order to facilitate developers to familiarize themselves with the platform, example code and software packages of testing 

programs are provided. Please Compile it using the following command: 

$ make queclink-dirclean 

$ make queclink 

 

3.1. Debugging Tool 

GV850 only has USB and serial ports. During the development and debugging process, it is inevitable to frequently modify 

binary programs or scripts. In order to avoid using STM32Cube Programmer for programming, which is an inefficient method, 

serial or USB methods can be used. 

rz, sz —— A transmission tool that supports the ZMODEM/YMODEM/XMODEM protocol and can upload/download files to 

the device through client-end software. The transmission efficiency depends on the physical connection of the 

transmission, such as the serial port baud rate or USB speed rate; 

Ethernet —— After enabling kernel configuration for STM32MP1 platform, the device can be plugged into the host PC 

through the OTG USB port. The device will be virtualized as an RNDIS network device, and a network device named "usb0" 

will also be generated inside the device system. After configuring the same network segment IP address, the two can 

communicate. 

Reference IP address configured to the device:  

$ ifconfig usb0 192.168.0.1 netmask 255.255.255.0 

It can be correctly identified as a network device on virtual machine ubuntu16 

 

After configuring the IP address, network communication can be established. 

$ ifconfig ens35u1i1 192.168.0.2 netmask 255.255.255.0 

Note: If due to driver issues, the virtual network device cannot be correctly identified. Please try to install/update the driver 

mod-rndis-driver-windows.zip. 

 

Queclink 

Confidential



GV850 Software Development Guide 

10 

4. Interface and Driver 

4.1. LTE 

Module model: EG915UEU, which is not in network card mode, but in uart module mode. It uses USART3, which corresponds 

to /dev/ttySTM3. The schematic diagram is as follows: 

 

  
  

Reference testing commands 

Set the baud rate to 115200bps and remove the incrnl attribute to avoid automatically converting input characters \r to \n. 

Remove the isig icanon echo echoe attribute to avoid output causing incorrect module command format +CME ERROR: 58 

error. 

$ stty -F /dev/ttySTM3 ispeed 115200 ospeed 115200 cs8 -icrnl -isig -icanon -echo -echoe 

 Receive module uart output, 

$ cat /dev/ttySTM3 

 PA15 module power supply enable output high, 

$ gpioset 0 15=1  

 PF5 module startup signal, 

$ gpioset 5 5=1 

$ gpioset 5 5=0 

 

Receive the module startup URC message, 

RDY   

 Turn off echo， 

$ echo "ATE0" > /dev/ttySTM3  

 

 Internal antenna or external antenna can be selected, select internal antenna， 

$ gpioset 4 2=1 

Or select external antenna， 

$ gpioset 4 2=0 

 

Queclink 

Confidential



GV850 Software Development Guide 

11 

 WAKE_ LTE (DTR pin PE14) controls the sleep of the module, high level allows sleep, and low level wakes up the module, 

$ gpioset 4 14=0 

 Query the DTR pin status via command, if it is 0, sleep is not allowed, 

$ echo "AT+QGPIOR=25" > /dev/ttySTM3 

+QGPIOR: 0 

 

OK 

 DTR pin output high level, 

$ gpioset 4 14=1    

 Query the DTR pin status via command, if it is 1, sleep is allowed 

$ echo "AT+QGPIOR=25" > /dev/ttySTM3 

+QGPIOR: 1 

 

OK 

 Send the AT+QSCLK=1 command to enter sleep, 

$ echo "AT+QSCLK=1" > /dev/ttySTM3 

OK 

 

Sending any AT command will wake up the module, but at the appropriate time, it will enter sleep again unless the DTR pin 

output is at low level or the sleep function is turned off using the AT+QSCLK=0 command. 

The module can notify the MPU through the level change of the WAKE_MCU (RI pin PD3). Due to the rapid level change, it 

is not possible to accurately obtain it using gpioget. Therefore, the gpiomon tool can be used for monitoring it. 

 For example, using command to turn off the module, 

$ echo "AT+QPOWD" > /dev/ttySTM3 

POWERED DOWN 

 Monitoring receives GPIO level change events, 

$ gpiomon 3 3 

event: FALLING EDGE offset: 3 timestamp: [    2582.179763702] 

event:  RISING EDGE offset: 3 timestamp: [    2582.300251859] 

event: FALLING EDGE offset: 3 timestamp: [    2582.618285921] 

event:  RISING EDGE offset: 3 timestamp: [    2582.618430593] 

 

Use the provided example_modem_at tool for command testing, as detailed in the "Example of Codes" section. 

The LTE module can serve as a wake-up source for system sleep, as detailed in the "System Sleep" section. 

 

The following demonstrates the process of how to connect to the network, send and receive TCP data. 

 Check for correct SIM card reading, 

$ echo "AT+CPIN?" > /dev/ttySTM3 

+CPIN: READY 

 

OK 

 

 Check CS status, 

$ echo "AT+CREG?" > /dev/ttySTM3 

Queclink 

Confidential



GV850 Software Development Guide 

12 

+CREG: 0,1 

 

OK 

  

 Attach PS domain, 

$ echo "AT+CGATT=1" > /dev/ttySTM3 

OK 

$ echo "AT+CGATT?" > /dev/ttySTM3 

+CGATT: 1 

 

OK 

 

 Activate PDP, 

$ echo "AT+QIACT=1" > /dev/ttySTM3 

OK 

 Check the PDP status and obtained IP address, 

$ echo "AT+QIACT?" > /dev/ttySTM3  

+QIACT: 1,1,3,"10.162.247.73","2408:8456:3040:AB7:1:1:A0D9:4891" 

 

OK 

 

 Ping domain name to check network connectivity, 

$ echo "AT+QPING=1,\"www.baidu.com\"" > /dev/ttySTM3 

OK 

 

+QPING: 0,"157.148.69.74",64,313,255 

+QPING: 0,"157.148.69.74",64,61,255 

+QPING: 0,"157.148.69.74",64,61,255 

+QPING: 0,"157.148.69.74",64,50,255 

+QPING: 0,4,4,0,50,313,87 

 

 Open socket, using 218.17.50.142:971 server/port as the example, 

$ echo "AT+QIOPEN=1,0,\"TCP\",\"218.17.50.142\",971,0,0" > /dev/ttySTM3 

OK 

 

+QIOPEN: 0,0 

 Check the status of the socket and confirm that it is connected, 

$ echo "AT+QISTATE?" > /dev/ttySTM3 

+QISTATE: 0,"TCP","218.17.50.142",971,0,2,1,0,0,"uart1" 

 

OK 

 

 Send the test string '12345' in HEX format, 

$ echo "AT+QISENDEX=0,\"3132333435\"" > /dev/ttySTM3 

Queclink 

Confidential



GV850 Software Development Guide 

13 

SEND OK 

 

 The server responds with data '67890', and the module will notify the module with a URC message upon receiving the 

data, 

+QIURC: "recv",0 

  

At this point, the received data can be read from the cache and the actual length and data will be returned, 

$ echo "AT+QIRD=0,1500" > /dev/ttySTM3 

+QIRD: 5 

 

67890 

 

 

OK 

 

 Close socket， 

$ echo "AT+QICLOSE=0" > /dev/ttySTM3 

OK 

 Check the status of the socket and confirm that it is closed, 

$ echo "AT+QISTATE?" > /dev/ttySTM3 

OK 

 

4.2. Watchdog 

GV850 adopts an external independent hardware watchdog. 

 

Pin Name Description Remarks 

PI 7 Watchdog enable IO 
output high, enable watchdog 

output low, disable watchdog 

PG 14 Restart watchdog IO 
Flip the level within 1.7s, otherwise a reset will be 

triggered. 

 

The software watchdog restart is implemented through a qdog driver and a sysfs interface is provided to enable and disable 

the watchdog, 

$ lsmod | grep qdog 

qdog                   16384  0 

Turn on watchdog and restart the watchdog automatically, 

echo 1 > /proc/qlwatchdog_enabled 

 

Turn off watchdog， 

echo 0 > /proc/qlwatchdog_enabled 

 

 

Queclink 

Confidential



GV850 Software Development Guide 

14 

4.3. RTC 

STM32MP133 has built-in RTC, device/dev/rtc0, and can be set and obtained through the system's built-in hwclock tool. 

When the system starts, it will be loaded and set as the local time of the system. Reference command: 

   Query the current system time, 

$ date 

Wed Jan  5 03:19:16 UTC 2000 

 Set the system time to local time 

$ date -s "2023-09-27 14:26:30" 

Wed Sep 27 14:26:30 UTC 2023 

 

    Set the system time to RTC 

$ hwclock –w 

 Read time from RTC 

$ hwclock -r 

Wed Sep 27 14:27:12 2023  0.000000 seconds 

 

The RTC can serve as a wake-up source for system sleep, as detailed in the "System Sleep" section. 

 

4.4. BLE 

Module model: BlueNRG-345AC, connected through I2C bus. STM32MP133 platform reads and writes from I2C bus 0 

through/dev/i2c-0 device.  

  

The reference testing commands are as follows: 

PE15 power supply enable output high, 

$ gpioset 4 15=1 

 PG7 is used to reset BLE, 

$ gpioset 6 7=1 

 Scan I2C bus 0, 

$ i2cdetect -y 0 

     0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f 

00:          -- -- -- -- -- -- -- -- -- -- -- -- -- 

10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- 3e -- 

40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

Queclink 

Confidential



GV850 Software Development Guide 

15 

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

70: -- -- -- -- -- -- -- -- 

 

After scanning the slave device on the I2C bus, the device boot message can be read. The BLE module serves as the I2C slave 

device with address 0xBE and register address 0x01, and reads 220 bytes each time. The command/protocol description is 

detailed in the document "BLE100 @ Bluetooth Internal Protocol". 

$ i2ctransfer -y 0 w1@0x3e 0x01 r220 

 

The provided example_ble tool can also be used for command testing, as detailed in the "Example of Codes" section. The 

BLE module is developed by Queclink itself. The command/protocol description is detailed in the document "BLE100 @ 

Bluetooth Internal Protocol". 

 

The sleep of the BLE module can be controlled, PH12 output high level allows sleep and low level wakes up the module, 

$ gpioset 7 12=1 

 

BLE Module events can be notified to the MPU through the PG4 pin, such as sending the command AT+F=12 to the BLE 

module, which will wake up the MPU, 

$ example_ble AT+F=12 

recv from BLE: 

+ACK:F,12,1,OK 

  

Level change events will be monitored on the PG4 pin 

$ gpiomon 6 4 

event:  RISING EDGE offset: 4 timestamp: [   15970.085069234] 

event: FALLING EDGE offset: 4 timestamp: [   15970.085634968] 

 

The BLE module can serve as a wake-up source for system sleep, as detailed in the "System Sleep" section. 

 

4.5. G-sensor  

Sensor model: ICM-40607-K, connected through SPI bus. The system provides IIO driver and device node 

/sys/bus/iio/devices/iio: device2. 

  

The hardware provides a sensor power supply enable pin. For current GV850, after power on, the output is of high level by 

default, that is, the G-sensor is turned on by default. 

$ gpioset 6 0=1 

 

Queclink 

Confidential



GV850 Software Development Guide 

16 

Use the provided example_gsensor tool for testing, as detailed in the "Example of Codes" section. 

 

4.6. GPS 

Module model: UBX_ M10050, connected through UART. It uses USART6, which corresponds to /dev/ttySTM6. It supports 

u-blox and NMEA protocols. 

 

  

The reference testing commands are as follows: 

Set the baudrate (38400 by default for M10050), 

$ stty -F /dev/ttySTM6 ispeed 38400 ospeed 38400 cs8 

 PD13 power supply enable output high level 

$ gpioset 3 13=1     

 Receive the NMEA data sent by the GPS module 

$ cat /dev/ttySTM6    

$GNRMC,041722.00,A,2234.41319,N,11356.88217,E,0.002,,050923,,,D,V*11 

$GNVTG,,T,,M,0.002,N,0.005,K,D*3F 

$GNGGA,041722.00,2234.41319,N,11356.88217,E,2,12,0.52,111.9,M,-2.7,M,,*5A 

$GNGSA,A,3,11,15,24,20,23,29,05,13,18,,,,0.97,0.52,0.82,1*06 

$GNGSA,A,3,09,36,10,34,05,11,,,,,,,0.97,0.52,0.82,3*0F 

$GNGSA,A,3,07,13,28,02,06,59,16,40,27,09,30,20,0.97,0.52,0.82,4*0E 

$GNGSA,A,3,,,,,,,,,,,,,0.97,0.52,0.82,5*06 

(…)  

 

Additionally, NMEA data can be forwarded to RS232_<N> serial port, and then open RS232 through the u-center tool to more 

intuitively parse NMEA data. The following example is to forward NMEA data to RS232_ 2 serial ports. 

Set RS232_2 baud rate to same 38400: 

$ stty -F /dev/ttySTM2 ispeed 38400 ospeed 38400 cs8 

Forward the data to RS232_2: 

$ cat /dev/ttySTM6 > /dev/ttySTM2  

 

 

Then select the correct COM port and baud rate in the u-center tool to start receiving and parsing data. 

Queclink 

Confidential



GV850 Software Development Guide 

17 

 

 

Linux system can also provide parsing and control tools that support multi-protocol such as NMEA and u-blox through the 

integration of gpsd software. For more information on how to use the tools, please refer to the following website: 

➢ https://gpsd.io/ 

  

cgps and gpsmon tools can instantly parse and display positioning data. cgps receives and parses JSON data containing 

positioning data information provided by gpsd services. And gpsmon directly parses and displays the raw data of the GPS 

module. Depending on the protocol supported by the module, choose to use u-blox or NMEA protocol accordingly. 

 

$ cgps 

 

 

 

Queclink 

Confidential



GV850 Software Development Guide 

18 

$ gpsmon 

The results of parsing data using the u-blox protocol: 

 

$ gpsmon –n 

The results of parsing data using the NMEA protocol: 

 
 

Check u-blox version: 

$ ubxtool -p MON-VER 

UBX-MON-VER: 

  swVersion ROM SPG 5.10 (7b202e) 

  hwVersion 000A0000 

  extension FWVER=SPG 5.10 

  extension PROTVER=34.10 

  extension GPS;GLO;GAL;BDS 

  extension SBAS;QZSS 

WARNING:  protVer is 10.00, should be 34.10.  Hint: use option "-P 34.10" 

 

Queclink 

Confidential



GV850 Software Development Guide 

19 

UBX-NAV-PVT: 

  iTOW 357228000 time 2023/9/21 03:13:30 valid x37 

  tAcc 24 nano -443396 fixType 3 flags x3 flags2 xea 

  numSV 32 lon 1139479540 lat 225735412 height 110133 

  hMSL 112846 hAcc 580 vAcc 1212 

  velN -1 velE 2 velD 17 gSpeed 2 headMot 0 

  sAcc 112 headAcc 17333086 pDOP 103 reserved1 0 16476 12118 

  headVeh 3102272 magDec 0 magAcc 0 

(…)  

 

You can use the following commands to perform cold start and calculate the time it takes from no positioning to positioning 

by the status change of the cgps monitoring tool: 

$ ubxtool -p COLDBOOT -P 34.10 

  

  

Queclink 

Confidential



GV850 Software Development Guide 

20 

 

 

4.7. CAN 

Module model: SPC582B60E1, connected through UART. It uses USART6, which corresponds to /dev/ttySTM7 

 

 

Set the baud rate (default) to 115200, and because the module serial port data is binary, the parameter raw needs to be 

used when using the stty tool to set it. Otherwise, the default tty attribute may overwrite the read data, such as the enabled 

icrnl attribute by default, which will overwrite 0x0D with 0x0A. 

$ stty -F /dev/ttySTM7 ispeed 115200 ospeed 115200 cs8 raw 

PG3 CAN MCU Power supply output enable： 

$ gpioset 6 3=1 

PA4 5V voltage increase enable： 

$ gpioset 0 4=1 

 

On Linux system, the read and written binary data can be edited by using the hexedit tool, and then read and write by using 

the dd tool. 

For example, write the binary command to be sent into the file out: 

Queclink 

Confidential



GV850 Software Development Guide 

21 

$ touch out 

$ hexedit out 

 

 Start reading in advance (at the background) and write the read data to the in file, 

$ dd if=/dev/ttySTM7 of=in & 

 

 Send the out file, 

$ dd of=/dev/ttySTM7 if=out 

  

 Use the hexdump tool to display the read binary data. 

$ hexdump -C in 

 

The module command/protocol description is detailed in the document "[22-12-12] CAN-Logistic v3 protocol XON-XOFF". 

The module provides three configurable GPIO outputs, where OUT2 is connected to PG1 of the MPU and can notify the MPU 

of events. The testing method is as follows: 

 

Query current PG1 status: 

$ gpioget 6 1 

1 

 

Use example_external_can tool to make OUT2 output 0, 

$ example_external_can 0x402 

STEP 

Read version, write len=6:  

F5 B3 10 01 3B F6  

read len=10:  

F5 B4 14 01 49 30 08 0D A8 F6  

 

STEP 

GPIO output1~3 disactivated, write len=9:  

F5 B3 43 02 00 00 20 E7 F6  

read len=9:  

F5 B4 43 02 00 6E 00 98 F6 

 

Query PG1 status again and it is updated, 

Queclink 

Confidential



GV850 Software Development Guide 

22 

$ gpioget 6 1 

0 

 

make OUT2 output 1, 

$ example_external_can 0x802 

STEP 

Read version, write len=6:  

F5 B3 10 01 3B F6  

read len=10:  

F5 B4 14 01 49 30 08 0D A8 F6  

 

STEP 

GPIO output2 activated, write len=9:  

F5 B3 43 02 40 00 20 A7 F6  

read len=9:  

F5 B4 43 02 00 6E 00 98 F6 

 

Query current PG1 status, and it goes back to the beginning status, 

$ gpioget 6 1 

1 

gpiomon can also be used to monitor PG1, 

$ gpiomon 6 1 

event:  RISING EDGE offset: 1 timestamp: [    2915.299024187] 

event: FALLING EDGE offset: 1 timestamp: [    2915.317364562] 

 

The CAN module can serve as a wake-up source for system sleep. On hardware, OUT2 is connected to PG1 of MPU as the 

wake-up source. The OUT2 function is configurable, with the default function being 'vehicle's buses active', 

 

 

 

The module will enter sleep on its own and pull PG1 up. When the module is awakened, pressing the CAN sync button will 

pull PG1 down, 

 

$ gpiomon 6 1 

event: FALLING EDGE offset: 1 timestamp: [  156339.620835030] 

 

 

Queclink 

Confidential



GV850 Software Development Guide 

23 

4.8. RS232/RS485 

There are 2 RS232 and 1 RS485. 

4-pin Hardware Device Description 

RS485 USART5 /dev/ttySTM5 / 

RS232_1 USART1 /dev/ttySTM1 / 

RS232_2 USART2 /dev/ttySTM2 / 

  

The front view of the 4-pin RS485 connector is as follows: 

 

Pin Pin Name Cable Color Description Device Nodes Remarks 

1 GND Black External Accessory Ground / / 

2 DC5V_3 Red External Accessory Power 250mA Max / / 

3 485B Orange white RS485B / / 

4 485A Orange black RS485A / / 

 

The front view of the 4-pin RS232 connectors is as follows: 

 

3 1 

4 2 

3 1 

4 2 

Queclink 

Confidential



GV850 Software Development Guide 

24 

 

Pin Pin Name Cable Color Description Device Nodes Remarks 

1 GND Black External Accessory Ground / / 

2 DC5V_1 Red External Accessory Power 250mA Max / / 

3 TX232_1 Gray black UART TXD1 RS232 / / 

4 RX232_1 Gray white UART RXD1 RS232 / / 

 

4.9. GPIO&ADC&1-WIRE 

There are 10 GPIO, 1 1-wire bus and 4 ADC inputs. 

 

The front view of the 16-pin connector is as follows: 

  

Descriptions of IOs and ADCs are as follows: 

 

Pin Pin Name Cable Color Description Device Nodes Remarks 

1 AIN1 Brown/white Analog Input1 0~32V 

/sys/bus/iio/devices/iio:d

evice1/in_voltage_scale 

/sys/bus/iio/devices/iio:d

evice1/in_voltage10_raw 

Volt=scale*raw*(18+20

0)/18 

Unit: mV 

2 DIN2 Orange/black Negative trigger input2 gpiochip2 9 $ gpioget gpiochip2 9 

3 AIN2 Red/brown Analog Input2 0~32V 

/sys/bus/iio/devices/iio:d

evice1/in_voltage_scale 

/sys/bus/iio/devices/iio:d

Volt=scale*raw*(18+20

0)/18 

Unit: mV 

Queclink 

Confidential



GV850 Software Development Guide 

25 

evice1/in_voltage4_raw 

4 DIN3 Blue Negative trigger input3 gpiochip2 10 $ gpioget gpiochip2 10 

5 AIN3 White/black Analog Input3 0~32V 

/sys/bus/iio/devices/iio:d

evice0/in_voltage_scale 

/sys/bus/iio/devices/iio:d

evice0/in_voltage2_raw 

Volt=scale*raw*(18+20

0)/18 

Unit: mV 

6 DIN4 Black/brown Negative trigger input4 gpiochip2 11 $ gpioget gpiochip2 11 

7 AIN4 Gray/black Analog Input4 0~32V 

/sys/bus/iio/devices/iio:d

evice1/in_voltage_scale 

/sys/bus/iio/devices/iio:d

evice1/in_voltage0_raw 

Volt=scale*raw*(18+20

0)/18 

Unit: mV 

8 DIN5 Pink Negative trigger input5 gpiochip2 12 $ gpioget gpiochip2 12 

9 OUT3 Brown Open drain output3 gpiochip8 0 
$ gpioset gpiochip8 

0=value 

10 OUT5 Orange Open drain output5 gpiochip8 3 
$ gpioset gpiochip8 

3=value 

11 OUT2 Yellow Open drain output2 gpiochip6 15 
$ gpioset gpiochip6 

15=value 

12 OUT4 White Open drain output4 gpiochip8 2 
$ gpioset gpiochip8 

2=value 

13 1W_DATA Green 1-WIRE data / / 

14 GND Black Ground / / 

15 VDD_1WIRE Red white 
Power for 1-wire 

devices 3.3V 
/ / 

16 AGND Black gray Analog Ground / / 

 

The front view of the 10-pin connector is as follows: 

 

 
 

Queclink 

Confidential



GV850 Software Development Guide 

26 

Descriptions of IOs and ADCs are as follows: 

 

The STM32MP133 platform can use the gpio tools tool to print GPIO group information. 

$ gpiodetect 

gpiochip0 [GPIOA] (16 lines) 

gpiochip1 [GPIOB] (16 lines) 

gpiochip2 [GPIOC] (16 lines) 

gpiochip3 [GPIOD] (16 lines) 

gpiochip4 [GPIOE] (16 lines) 

gpiochip5 [GPIOF] (16 lines) 

gpiochip6 [GPIOG] (16 lines) 

gpiochip7 [GPIOH] (15 lines) 

gpiochip8 [GPIOI] (8 lines) 

 

# gpioinfo 

gpiochip0 - 16 lines: 

        line   0:        "PA0"       kernel   input  active-high [used] 

        line   1:        "PA1"       unused   input  active-high 

        line   2:        "PA2"       kernel   input  active-high [used] 

        line   3:        "PA3"       unused   input  active-high 

        line   4:        "PA4"       unused   input  active-high 

        line   5:        "PA5"       kernel   input  active-high [used] 

(…) 

 

 

 

Pin Pin Name Cable Color Description Device Nodes Remarks 

1 DCIN Red DC Power 8-32V / / 

2 GND Black Ground / / 

3 IGN White Positive trigger input gpiochip0 6 
$ gpioget gpiochip0 

6 

4 DIN1 Orange Negative trigger input1 gpiochip2 8 
$ gpioget gpiochip2 

8 

5 K-LINE Pink ISO K Line / / 

6 OUT1 Yellow 
Open drain output1 with 

latch 
gpiochip0 3 

$ gpioset gpiochip0 

3=value 

7 CAN1L Brown black CAN Bus CAN1L / / 

8 CAN1H Brown white CAN Bus CAN1H / / 

9 CAN2L Blue CAN Bus CAN2L / / 

10 CAN2H Brown CAN Bus CAN2H / / 

Queclink 

Confidential



GV850 Software Development Guide 

27 

4.10. Power&Battery 

Main power function and interface description are as follows: 

Function Device Nodes Remarks 

Voltage detection 
/sys/bus/iio/devices/iio:device1/in_voltage_scale 

/sys/bus/iio/devices/iio:device1/in_voltage2_raw 

Volt=scale*raw*(82+1000)/82 

Unit: mV 

 

Backup battery power function and interface description are as follows: 

Function Device Nodes Remarks 

Voltage detection 
/sys/bus/iio/devices/iio:device1/in_voltage_scale 

/sys/bus/iio/devices/iio:device1/in_voltage1_raw 

Volt=scale*raw*(200+200)/200 

Unit: mV 

Power supply On 

gpiochip5 12 

On 

$ gpioset gpiochip5 12=1  

Off 

$ gpioset gpiochip5 12=0 
Power supply Off 

Charging Start 

gpiochip0 11 

Start 

$ gpioset gpiochip0 11=1  

Stop 

$ gpioset gpiochip0 11=0 
Charging Stop 

Charging Status gpiochip6 12 

$ gpioget gpiochip6 12 

0, Charging 

1, Not Charging  

Charging IC On 

gpiochip0 13 

On 

$ gpioset gpiochip0 13=1  

Off 

$ gpioset gpiochip0 13=0 

The power supply of the ammeter IC is 

associated with the power supply 

input of the battery charging 

management IC. It is necessary to 

enable it first (backup battery on, 

charging ammeter IC on), then enable 

charging (backup battery charging 

starts), and then detect the charging 

current 

Charging IC Off 

Charging Current 
/sys/bus/iio/devices/iio:device1/in_voltage_scale 

/sys/bus/iio/devices/iio:device1/in_voltage16_raw 

Current=scale*raw 

Unit: mA 

Battery 

Temperature 

Detection On 
gpiochip6 13 

On 

$ gpioset gpiochip6 13=1  

Off 

$ gpioset gpiochip6 13=0 

Battery 

Temperature 

Detection Off 

Battery /sys/bus/iio/devices/iio:device1/in_voltage_scale Volt=scale*raw*(10+10)/10 

Queclink 

Confidential



GV850 Software Development Guide 

28 

Temperature /sys/bus/iio/devices/iio:device1/in_voltage15_raw Unit: mV 

 

4.11. LED 

There are 3 LEDs, which are controlled by GPIO. 

Pin Name LED Name Description 

PA8 GPS signal LED 

On, PA8 output high 

$ gpioset 0 8=1 

Off, PA8 output low 

$ gpioset 0 8=0 

PE6 Network signal LED 

On, PE6 output high 

$ gpioset 4 6=1 

Off, PE6 output low 

$ gpioset 4 6=0 

PG11 Power supply status LED 

On, PG11 output high 

$ gpioset 6 11=1 

Off, PG11 output low 

$ gpioset 6 11=0 

 

 

 

Queclink 

Confidential



GV850 Software Development Guide 

29 

5. System Sleep 

This section introduces the low-power design of the stm32mp133 platform and the control methods for entering low-power. 

MPU provides multiple energy consumption operation modes, 

 
The wake-up sources supported in each mode are different, as shown in the following table, 

 

 That is to say, the low-power mode MPU can enter depends on the wake-up source required by the application scenario, 

Queclink 

Confidential



GV850 Software Development Guide 

30 

 

According to the GV850 specifications and application scenarios, it is required to realize modes LPLV-STOP/LPLV-STOP2 and 

Off/VBAT. OpenSTLinux implements a power management mechanism, as shown in the following figure, 

 

Queclink 

Confidential



GV850 Software Development Guide 

31 

 

  

Only by using the provided Linux sysfs interface, the configuration and enabling/disabling of wake-up sources and initiating 

of state/mode switchover request can be done. By calling the PWR driver to control the hardware PWR, adjust the VDDCORE 

and VDDCPU voltages according to the following table. After both voltages meet the conditions, the MPU as a whole can 

enter the corresponding energy consumption state. 

 

Due to differences in power management hardware between GV850 and the official demo board, GV850 uses separate 

components instead of power management IC (PMIC), and GPIO is used for PWR control instead of I2C interface. Therefore, 

GPIO needs to be adapted and adopted in the PWR driver. 

 

 

 

 

Queclink 

Confidential



GV850 Software Development Guide 

32 

Wake-up source table, 

 

Name Pin Location 

RTC  Inside MPU 

UART  Interface 

LTE GPIO PD3 External module 

USB GPIO PD7 Interface 

CAN GPIO PG1 External module 

BLE GPIO PG4 External module 

G-sensor  External module 

 

5.1. RTC Wake-up 

It is enabled by default. By using the rtcwake tool, scheduled wake-up can be completed. The usage method is as follows: 

Check the current system time, 

$ date 

Wed Sep 27 14:36:57 UTC 2023 

 Initiate sleep and wake up at 14:39, 

$ rtcwake -t `date -d 14:39 +%s` -m mem -d /dev/rtc0 

wakeup from "mem" at Wed Sep 27 14:38:58 2023 

[  825.648590] PM: suspend entry (deep) 

[  825.651151] Filesystems sync: 0.000 seconds 

[  825.662977] Freezing user space processes ... (elapsed 0.001 seconds) done. 

[  825.670398] OOM killer disabled. 

[  825.673390] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done. 

[  825.680988] printk: Suspending console(s) (use no_console_suspend to debug) 

 

 Or directly specify the sleep interval, 

$ rtcwake -s 60 -m mem -d /dev/rtc0 

wakeup from "mem" at Sat Jan  1 22:54:38 2000 

[   27.544938] PM: suspend entry (deep) 

[   27.547565] Filesystems sync: 0.000 seconds 

[   27.559313] Freezing user space processes ... (elapsed 0.001 seconds) done. 

[   27.566787] OOM killer disabled. 

[   27.569771] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done. 

[   27.577385] printk: Suspending console(s) (use no_console_suspend to debug) 

  

Will wake up after 60 seconds of sleep by itself and return to the system command prompt. 

[   27.584948] inv-mpu-iio-spi spi0.0: icm42600 suspend 

[   27.588715] dwc2 49000000.usb-otg: suspending usb gadget g_ether 

[   27.593181] Disabling non-boot CPUs ... 

[   27.597019] dwc2 49000000.usb-otg: resuming usb gadget g_ether 

[   27.602441] nand: SDR timing mode 4 not acknowledged by the NAND chip 

Queclink 

Confidential



GV850 Software Development Guide 

33 

[   27.604035] inv-mpu-iio-spi spi0.0: icm42600 resume 

[   27.635996] OOM killer enabled. 

[   27.639113] Restarting tasks ... done. 

[   27.657140] PM: suspend exit 

root@Queclink-GV850:~# 

 

5.2. UART Wake-up 

It is disabled by default. Taking the system console UART device ttySTM0 as an example to show the enabling method, 

 Check the default value,  

$ cat /sys/devices/platform/soc/40010000.serial/power/wakeup 

disabled 

$ cat /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup 

disabled 

 Modify the wake-up source to enable state, 

$ echo enabled > /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup 

$ echo enabled > /sys/devices/platform/soc/40010000.serial/power/wakeup 

  

 Initiate a sleep request, 

$ echo mem > /sys/power/state 

[  192.680917] PM: suspend entry (deep) 

[  192.695818] Filesystems sync: 0.012 seconds 

[  192.699298] Freezing user space processes ... (elapsed 0.001 seconds) done. 

[  192.706747] OOM killer disabled. 

[  192.709813] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done. 

[  192.717339] printk: Suspending console(s) (use no_console_suspend to debug) 

During sleep, if there are no other wake-up sources, it will wake up when UART receives data and return to the system 

command line login. 

[  192.725008] inv-mpu-iio-spi spi0.0: icm42600 suspend 

[  192.728334] dwc2 49000000.usb-otg: suspending usb gadget g_ether 

[  192.732793] Disabling non-boot CPUs ... 

[  192.736417] dwc2 49000000.usb-otg: resuming usb gadget g_ether 

[  192.741961] nand: SDR timing mode 4 not acknowledged by the NAND chip 

[  192.743202] inv-mpu-iio-spi spi0.0: icm42600 resume 

[  192.775183] OOM killer enabled. 

[  192.778435] Restarting tasks ... done. 

[  192.783454] PM: suspend exit 

^Z 

Welcome to Buildroot 

Queclink-GV850 login: 

 

 

 

Queclink 

Confidential



GV850 Software Development Guide 

34 

6. Example of Codes 

In order to facilitate developers to familiarize themselves with and use the modules on the device, example source code for 

some module interfaces is provided for reference. 

 

6.1. example_ble 

It demonstrates how to send commands to the BLE module and receive response data. For more information on the module, 

please refer to the "BLE" section. 

The method is as follows, with the main steps being to enable power supply and test command:  

$ gpioset 4 15=1 

 

Use the tool to send the AT+F=1 command to read the BLE firmware version. Since it has just started up, the response data 

is a startup message. Please ignore it, 

$ example_ble AT+F=1 

recv from BLE: 

+ACK:X,99,01.01,64F4193F0C000000 

 

Use the same command again, it returns the correct response data, including BLE firmware version information, 

$ example_ble AT+F=1 

recv from BLE: 

+ACK:F,1,01.01,OK 

 

Query the BOOT APP version of the BLE module, 

$ example_ble AT+F=17,0 

recv from BLE: 

+ACK:F,17,0,NABE5_BT_BOOTR00A01V01,OK 

$ example_ble AT+F=17,1 

recv from BLE: 

+ACK:F,17,1,NABE5_BT_R00A02V03,OK 

 

6.2. example_formula_can 

It demonstrates how to send commands to the CAN module and receive response data. For more information on the module, 

please refer to the "CAN" section. 

The method is as follows, with the main steps being to set baud rate, enable power supply and test command:  

$ stty -F /dev/ttySTM7 ispeed 115200 ospeed 115200 cs8 raw 

$ gpioset 6 3=1  

$ gpioset 0 4=1 

 

Embedded commands inside the tool, parameters (OR values) can be used to control the sequence of the commands to be 

executed, 

$ example_external_can  

Usage: 

Queclink 

Confidential



GV850 Software Development Guide 

35 

  example_external_can <testing mask> 

 

Testing mask: 

 -Read SN,  --0x01 

 -Read version,  --0x02 

 -Read boot version,  --0x04 

 -Read INPUT_3 voltage,  --0x08 

 -Read V_IN voltage,  --0x10 

 -Enter develop mode,  --0x20 

 -CAN loop test,  --0x40 

 -K-Line test,  --0x80 

 

Execute Read version command, 

$ example_external_can 0x02 

STEP 

Read version, write len=6:  

F5 B3 10 01 3B F6  

read len=10:  

F5 B4 14 01 49 30 08 0D A8 F6 

Execute Read version and CAN loop test commands, 

$ example_external_can 0x42 

STEP 

Read version, write len=6:  

F5 B3 10 01 3B F6  

read len=10:  

F5 B4 14 01 49 30 08 0D A8 F6  

 

STEP 

CAN loop test, write len=9:  

F5 B3 43 02 00 80 10 77 F6  

read len=9:  

F5 B4 43 02 00 6E 00 98 F6 

 

6.3. example_modem_at 

It demonstrates how to send commands to the LTE module and receive response data. For more information on the module, 

please refer to the "LTE" section. 

The method is as follows, with the main steps being to set baud rate, enable power supply, power on the module, turn off 

command echo and test command:  

 

$ stty -F /dev/ttySTM3 ispeed 115200 ospeed 115200 cs8 -icrnl -isig -icanon -echo -echoe 

$ gpioset 0 15=1 

$ gpioset 5 5=1 

$ gpioset 5 5=0 

Queclink 

Confidential



GV850 Software Development Guide 

36 

Use the tool to send the ATE0 command to turn off echo, 

$ example_modem_at ATE0 

ATE0 

 

 

OK 

 

Send the AT+GMR command to query the firmware version of the LTE module, 

$ example_modem_at AT+GMR 

EG915UEUABR02A05M08 

 

 

OK 

  

6.4. example_gsensor 

Demonstrates how to provide a sysfs interface through the driver to complete the initialization, data collection, and 

command testing of the IMU device: 

$ example_gsensor 

Usage: 

  test-sensors-sysfs [-d <device_no>] [-a <rate>] [-g <rate>] [-c] 

 

Options: 

 -h, --help 

   Show this help and quit. 

 -d, --device 

   Choose device by numero. 

 -a, --accel 

   Turn accelerometer on with ODR (Hz). 

 -g, --gyro 

   Turn gyroscope on with ODR (Hz). 

 -c, --convert 

   Show data after unit conversion (m/s^2, rad/s) 

 -b, --batch 

   Set batch timeout in ms. 

Version: 

 1.1.0 

 

 

 

For example, the sampling frequency is 100Hz, 

$ example_gsensor -d 2 -a 100 -g 100 

… 

Accel body (LSB)  ,   +113,    +13,  +4077,       17478588377202,  176.818,    1.128 

Queclink 

Confidential



GV850 Software Development Guide 

37 

Gyro  body (LSB)  ,     -4,     +5,     +1,       17478588342172,   16.954,    1.163 

Accel body (LSB)  ,   +114,    +13,  +4082,       17478598377202,   10.000,    1.338 

Gyro  body (LSB)  ,     -3,     +5,     +1,       17478598307142,    9.965,    1.408 

Accel body (LSB)  ,   +111,     +8,  +4084,       17478608377202,   10.000,    1.176 

Gyro  body (LSB)  ,     -5,     +6,     +1,       17478608272112,    9.965,    1.281 

Accel body (LSB)  ,   +111,    +12,  +4094,       17478618377202,   10.000,    1.226 

Gyro  body (LSB)  ,     -4,     +4,     +1,       17478618237082,    9.965,    1.366 

Accel body (LSB)  ,   +114,    +14,  +4092,       17478628377202,   10.000,    1.109 

Gyro  body (LSB)  ,     -4,     +5,     +0,       17478628202052,    9.965,    1.284 

 

Sampling results after unit conversion, 

$ example_gsensor -d 2 -a 100 -g 100 -c 

… 

Accel body (m/s^2),     +0.270545,     +0.021548,     +9.761160,       17568890862843,  169.503,    1.343 

Gyro  body (rad/s),     -0.005326,     +0.005326,     +0.001065,       17568890827813,    9.549,    1.378 

Accel body (m/s^2),     +0.270545,     +0.028730,     +9.806650,       17568900862843,   10.000,    1.376 

Gyro  body (rad/s),     -0.004261,     +0.005326,     +0.001065,       17568900792783,    9.965,    1.446 

Accel body (m/s^2),     +0.268151,     +0.021548,     +9.782708,       17568910862843,   10.000,    1.426 

Gyro  body (rad/s),     -0.005326,     +0.005326,     +0.000000,       17568910757753,    9.965,    1.531 

Accel body (m/s^2),     +0.265756,     +0.023942,     +9.787497,       17568920862843,   10.000,    1.423 

Gyro  body (rad/s),     -0.005326,     +0.006392,     +0.000000,       17568920722723,    9.965,    1.563 

 

Queclink 

Confidential


	0. Revision History
	1. Overview
	2. Platform Development
	2.1. devicetree
	2.2. bootchain
	2.3. Compilation Method
	2.4. Programming
	USB OTG
	OTA


	3. Application Development
	3.1. Debugging Tool

	4. Interface and Driver
	4.1. LTE
	4.2. Watchdog
	4.3. RTC
	4.4. BLE
	4.5. G-sensor
	4.6. GPS
	4.7. CAN
	4.8. RS232/RS485
	4.9. GPIO&ADC&1-WIRE
	4.10. Power&Battery
	4.11. LED

	5. System Sleep
	5.1. RTC Wake-up
	5.2. UART Wake-up

	6. Example of Codes
	6.1. example_ble
	6.2. example_formula_can
	6.3. example_modem_at
	6.4. example_gsensor




