

GV850 Software Development Guide

Version: 1.02

Document Title	GV850 Software Development Guide	
Version	1.02	
Date	2024-08-28	
Status	Released	

General Notes

Queclink offers this information as a service to its customers, to support application and engineering efforts that use the products designed by Queclink. The information provided is based upon requirements specifically provided to Queclink by the customers. Queclink has not undertaken any independent search for additional relevant information, including any information that may be in the customer's possession. Furthermore, system validation of this product designed by Queclink within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information which is the property of Queclink. Copying of this document, distribution to others or using or communication of the contents thereof is forbidden without express authority. Offenders are liable to the payment of damages. All rights are reserved in the event of a patent grant or the registration of a utility model or design. All specifications supplied herein are subject to change without notice at any time.

Copyright © Queclink Wireless Solutions Co., Ltd. 2023

Contents

0. Revision History	
1. Overview	2
2. Platform Development	6
2.1. Device Tree	6
2.2. Boot Chain	6
2.3. Compilation Method	7
2.4. Programming	
USB OTG	
OTA	9
3. Application Development	
3.1. Programming Languages	
3.2. Queclink Software Package Compilation	
3.3. Debugging Methods	
3.3.1. UART Console Debugging	
3.3.2. USB Port Debugging	
3.3.3. Debugging Tools	
3.3.4. Terminal Login	
3.3.5. Internet Access to the Internet	
3.3.6. Modify the default IPv4 address of the USB network	
3.4. Custom Packages	
3.5. Device logs	
3.5.1. System log	
3.5.2.Application log	
4. Interface and Driver	
4.1. LED	
4.2. LTE	
4.2.1 UART Modem	
4.2.2 Ethernet Adapter	
4.3. GNSS	
4.4. CAN Module	
4.4.1 GV80 CAN OBD Module	
4.4.2 GV8551 Raw CAN FD	
4.5. G-sensor	
4.6. BLE	
4.7. RS232/RS485	
4.8. GPIO&ADC&1-WIRE	
4.9. Watchdog	
4.10. RTC	
4.11. Power&Battery	
4.11.1. 获取主电电压 Get Main power voltage	
4.11.2. 获取电池电压 Get battery voltage 4.11.3. 电池充电 Battery Charging	
4.11.4. 读取电池温度 Reading battery temperature	

4.12. 硬件版本 Hardware version	
5. System Sleep	
5.1. ST 官方描述 ST official description	
5.2. 设备唤醒源 Device wakeup source	
5.3. RTC Wake-up	
5.4. UART Wake-up	
6.3 USB Wake-up	
6.4 G-Sensor Wake-up	
6.5 IGN Wake-up	
6.6 POWER Wake-up	74
6.7 IO Input Wake-up	74
6.8 Button Wake-up	74
6.9 CAN OBD module Wake-up	75
6. Example of Codes	
6.1. utils_info	
6.2. example_modem_at	
6.3. example_formula_can	77
6.4. example_gsensor	
6.5. example_ble	79
6.6. example_input_intr	81
6.7. gpiosnoop	
7. Queclink Software Modules Queclink Software Modules	83
7.1. Canobd	83
7.1.1. Introduction to CAN Module	83
7.1.2. CAN module automotive parameter table	85
7.1.3. CANOBD Core Interface	
7.2. Batterymgr	
7.2.1. Service Introduction	
7.2.2. Batterymgr management logic	
7.2.3. Batterymgr Core Interface	
7.3. Selftask	
7.3.1. Reporting messages	
7.3.2. Core Interface	
7.4. Testcase	
7.4.1 Module Introduction	
7.4.2. Page Display	

0. Revision History

/ersion	Date	Author	Description of Change
L.00	2023-09-25	Alex Liao	Initial
L.01	2023-11-21	Alex Liao	Added more information to make the file more complete.
1.01	2023-11-21	Alex Liao Mundo , Alex Liao	 In accordance with the modifications in hardware version V1.04, update the device's IO resource content. A new DDR power control pin with a latching function has been added. A new internal power supply enable latching function has been introduced, with the data pin remaining the same. The LTE module has been updated with a new USB network card function. Details can be found in the "LTE" section. Added more description on the application development and debugging process Added an explanation of the GV851 CAN FD module to this document. Refer to the "Raw CAN FD" section for details. A new section "Queclink Software Modules" has been added to the document, along with introductions to the "CANOBD," "Batterymgr," "selftask," and "Testcase" software modules. Optimized the module circuit diagrams in the "Interface and
1.02	2024-08-22	,	 debugging process 3. Added an explanation of the GV851 CAN FD module document. Refer to the "Raw CAN FD" section for details. 4. A new section "Queclink Software Modules" has been a the document, along with introductions to the "CA "Batterymgr," "selftask," and "Testcase" software modules.

1. Overview

CPU	STM32MP133A
RAM	128MB, DDR3 or above
FLASH Memory	128MB SPI or above
Status LEDs	1 x Power, 1 x CEL, 1 x GNSS LED, 1 x CAN/Tachograph
Modem	Support Cat 1 LTE-FDD: B1/B3/B5/B7/B8/B20/B28 GSM: B2/B3/B5/B8
SIM	1 x SIM card slot or eSIM
Cellular Antenna	Internal or external
GNSS	u-box all-in-one GNSS receiver, support GPS, Glonass, Galileo, Beidou
GNSS Antenna	Internal or external
CAN	CAN1H/CAN1L, support reading CAN bus data in heavy (J1939/FMS) and light vehicle CAN2H/CAN2L, support reading and download tachograph data, support reading CAN data in J1708 and OBDII
K-Line	Connect D8 of tachograph for live data reading
RS232 or RS485	2 x RS232, 300-115200 baud rate 1 x RS485, 300-115200 baud rate/Half Duplex (2 wires)
I/O	 1 x positive trigger input for ignition detection 5 x negative trigger inputs 4 x analog input (0-32V) 5 x digital output, open drain, 150mA max drive current 3 x 5V outputs for external accessories 1 x DC 3.3V output for temperature sensor
1-Wire Interface	Support 1-wire temperature sensor and iButton driver ID
G-sensor	6-axis motion, motion detection, harsh driving detection, shock detection
BLE	BLE5.2
BLE Antenna	Internal
Battery	Li-Polymer, 1100mAh
Reset button	Reset button to reset CAN
Type-C USB	Used for configuration, upgrade and debug
Sleep Current	< 10mA

Firmware/configuration					
Operating system	Linux OS, Kernel 5.15.67				
Power					
Connector	Pin connector				
Input voltage range	8 – 32 VDC, reverse polarity protection; surge protection >31 VDC 10us max				
Power consumption	5W (average)				
Physical Specification					
Dimensions	123*80*21mm (L*W*H)				
Weight	150g				
Mounting options	Flat surface placement				
Operating Environment					
Operating temperature	-20 °C to 60 °C				
Operating humidity	10% to 90% RH non-condensing				
Ingress Protection Rating	IP30				

The hardware block diagram is as following:

The software block diagram is as follows:

Queclink Demo							
Telemetry	(C code)						
Example ((C code)	Custom a	pplications with Que	Custom ap	Custom applications without		
Battery servi	ce (C code)				Que	Queclink API SDK	
Testing Web (F	ython code)						
			Queclink API SDK	:			
	ırmv7-eabihf-glibc	Python3.10	dropbear g	gpsd can-uti	ls libgpiod	··· etc	
	rrmv7-eabihf-glibc Platform driver			k-drv-onewire	ls libgpiod Queclink-drv-watcho Queclink-drv-usb2se	log	
inux Kernel DTS	Platform driver			k-drv-onewire	Queclink-drv-watcho	log	
inux Kernel	Platform driver			k-drv-onewire	Queclink-drv-watcho	log	

Two construction methods, buildroot and yocto, and corresponding SDK source codes, are provided. The positioning from Linux of these two construction methods differs (though both are commonly used in embedded systems, but there are differences in efficiency and usage methods):

- Buildroot, which builds a more streamlined and simple system and is suitable for devices with limited hardware resources (mainly flash);
- Yocto, which builds a system with rich features and supports more complete hardware, including UI, audio and video software stacks, requiring a larger flash size.

2. Platform Development

At present, source codes for building systems based on buildroot are provided, which can build and package complete system images.

2.1. Device Tree

The first step in developing STM32MP1 platform devices is to adapt a device tree based on its hardware. Moreover, because the device tree is used in each module of bootchain, it is a complex and cumbersome operation to ensure that each module obtains the correct device tree during compilation. Therefore, ST has provided the STM32CubeMX tool to provide visualization, assistance, and configuration wizards that can automatically generate the device tree required by each module.

The provided buildroot source codes already contain the adapted devicetree.

2.2. Boot Chain

The STM32MP133 platform is based on the ARM Cortex-A7 architecture, and the boot process is similar to other ARM architectures. It is mainly divided into the following stages:

ROM code

FSBL (First stage bootloader) TF-A

SSBL (Second-stage bootloader), u-boot

Please search "boot chain" in following link to get more information.

https://wiki.stmicroelectronics.cn/stm32CPU/wiki/Main_Page

After understanding the startup process of STM32 ARM, it's known that the actual module relationship is:

TF-A->OP-TEE->U-BOOT->Linux Kernel

After initially adjusting the device tree according to the actual hardware configuration, copy the device tree to the source code directory of the above-mentioned modules for compilation, flashing, and running. If any errors occur, refer to the error messages and resolve them by consulting the "STM32MP135x_bringup" documentation.

2.3. Compilation Method

To use the Buildroot, there must be a Linux distribution installed on the workstation. Any reasonably recent Linux distribution (Ubuntu, Debian, Fedora, Redhat, OpenSuse, etc.) will work fine. Then, a small set of packages needs to be installed as described in the System Requirements section of Buildroot Manual.

For Debian/Ubuntu distributions, use the following command to install the necessary packages:

\$ sudo apt-get install -y debianutils sed make binutils build-essential gcc g++ \

bash patch gzip bzip2 perl tar cpio unzip rsync file bc git \

wget python3 libssl-dev libncurses-dev

After finishing installation, extract source tarball that is provided:

\$ tar zxvf GV850_buildroot_dd981da1.tar.gz

Go to the Buildroot directory:

\$ cd GV850_buildroot_dd981da1/buildroot/

And then, configure the system you want to build by using the defconfigs provided in this BR2_EXTERNAL tree.

\$ make BR2_EXTERNAL=../buildroot-external-st st_stm32mp133a_queclink_GV850CEU_defconfig

For model GV851:

\$ make BR2_EXTERNAL=../buildroot-external-st st_stm32mp133a_queclink_GV851CEU_defconfig

There are two pieces of information are provided:

- 1. The path to BR2_EXTERNAL tree, which is provided side-by-side to the Buildroot repository.
- 2. The name of the Buildroot configuration.

If there is the need to further customize the Buildroot configuration, please run 'make menuconfig', but for the first

build, it is recommended to keep the configuration unchanged so that it can be verified that everything is working.

Start the build:

\$ make V=s

It might take between 30 and 60 minutes depending on the configuration that is chosen and how powerful the machine is. All software packages for building the entire Linux system for the STM32MP1 platform (e.g. cross-compilation toolchain, firmware, bootloader, Linux kernel, root filesystem) are already included, no downloading is needed unless default configuration is customized.

Buildroot might need to be authorized to root (or sudo) in order to compile some packages (related to Python 3) properly. If some permission failures are met, please retry:

\$ sudo make V=s

When the building is done, it will output images in the directory below, including u-boot, kernel, rootfs binary files.

\$ cd output/images

Following files in this directory are necessary for flashing, please copy and prepare for flashing.

├--- fip.bin

├— flash.tsv

├── metadata.bin

├── rootfs.ubi

└── tf-a-stm32mp133a-gv850ceu-mx.stm32

2.4. Programming

The device supports both USB OTG programming and OTA firmware updating.

USB OTG

After successfully building with Buildroot, the complete files required for programming can be obtained.

├ fip.bin	// FIP
├— flash.tsv	// Program partitions configuration table
├— metadata.bin	
├— rootfs.ubi	<pre>// Including kernel and file system rootfs</pre>
└── tf-a-stm32mp133a-gv850ceu-mx.stm32	// TF-A

The device first enters DFU mode. And then use the STM32CubeProgrammer tool to erase and programm the device. The method and steps are as follows:

1. Use the USB+UART 2-in-1 cable provided along with the device, open the COM device on a PC using the UART tool, and the baud rate is 115200bps;

2. Power on the device, the COM starts printing the startup log, and then quickly press any key on the keyboard. The startup process will be interrupted and it requires to enter the u-Boot command. Then, enter the following command to enter DFU mode;

STM32MP> stm32prog usb 0

Net: No ethernet found.
Hit any key to stop autoboot: 0
STM32MP>
STM32MP> stm32prog usb 0
DFU alt info setting: done
#
UPLOAD done
Ctrl+C to exit
#
FlashLayout received, size = 653
DOWNLOAD OK
Ctrl+C to exit

3. Connect the USB of the cable to the PC, click the right button of the mouse to click refresh, after automatically scanning and finding the device that has entered DFU mode, and then click "Connect"

4. Select "Open file" to load the flash. tsv file from the released firmware, and note that select the correct path for "Browse";

3. Click "Download" to start programming. After successful programming, power off the device, unplug and reinsert the USB Type-C cable, power on the device, and the device enters the boot process.

•							En STN	132CubeProgrammer			
B2 Progr	rammer							1 Data Information	Notice	f 🕨 🗄	* 🛪 🐬
	Mem	nory 8	k File	editing							Not connect
	Device	e mem	ory fi	ash.tsv × +						USB	 Connect
Α	ddres	s		✓ Size		Data width	32-bit	Find Data 0x	Download 🔹	US	B configuration
	Select	Opt	ld	Name	Туре	IP	Offset	Binary		Serial number	0031001935325111313
	\checkmark	-	0x1	fsbl-boot	Binary	none	0x0	tf-a-stm32mp133a-gv850ceu-mx.stm32	1	PID	0xdf11
	\checkmark	-	0x3	fip-boot	FIP	none	0x0	fip.bin		VID	
	\checkmark	Ρ	0x4	fsbl1	Binary	nand0	0x00000000	tf-a-stm32mp133a-gv850ceu-mx.stm32	_		0x0483
	\checkmark	Ρ	0x5	fsbl2	Binary	nand0	0x00080000	tf-a-stm32mp133a-gv850ceu-mx.stm32		Read Unprotect	
	\checkmark	Р	0x6	metadata1	Binary	nand0	0x00100000	metadata.bin		TZEN Regressio	n (MCU)
		Р	0x7	metadata2	Binary	nand0	0x00180000	metadata.bin			
E	Binaries	s path	/	Users/alex/Desktop/G	/850_FCTR00A0	1V01			Browse		
L	og							Live Update Verbosity level	2 3		
F	17:01:2:	2 : Mem	ory Prog	gramming					^ _		

ΟΤΑ

Still under development.

3. Application Development

3.1. Programming Languages

The current GV850 and GV851 device support the development languages C/C++/Python. The provided Buildroot SDK source package includes a cross-toolchain, which can compile C/C++ source code and link it into executable files that can run on the ARM platform.

The device currently only supports Python 3, and comes pre-installed with the pip tool. After connecting to the Internet, you are free to download and install various Python modules. This greatly enhances the efficiency of embedded software development.

3.2. Queclink Software Package Compilation

In order to facilitate developers to familiarize themselves with the platform, example code and software packages of testing programs are provided. Please Compile it using the following command:

\$ make queclink-dirclean \$ make queclink

In the output/build/queclink-X.X/modules/ directory, you will find the target files generated from the compilation. These target files are also copied to the corresponding output/target/ directory. During the firmware compilation process, they are collectively packaged into the root file system. Taking the example_ble tool as an example, the executable file path is as follows:

./output/build/queclink-1.0/tools/example_ble ./output/target/usr/sbin/example_ble

3.3. Debugging Methods

Once an executable file is compiled, it needs to be copied to the device for running and debugging. This process is both frequent and crucial. We offer very convenient debugging methods, namely UART Console and USB Ethernet/RNDIS Net SSH.

The product package includes a 2-in-1 cable, with one end being a USB Type-C connector that connects to the USB port of the GV850 device; the other end consists of two USB Type-A connectors. One of the USB Type-A connectors, marked with "DATA_CABLE_M," has a built-in USB-to-Serial chip, and the other USB Type-A connector serves as a general-purpose USB port. In the subsequent content, USB Type-A #1 is the USB-to-Serial USB connector, while USB Type-A #2 is the USB Ethernet/RNDIS USB connector.

3.3.1. UART Console Debugging

UART Console debugging is essential during the development of embedded devices. It is the only way to check the device status when the system experiences severe failures. The UART Console port is often used for configuring the system, viewing logs, entering commands, and transferring files.

The GV850 device also offers this debugging method. Initially, install the appropriate USB-to-Serial port driver on the development coCPUter. Subsequently, connect the Type-C end of the USB cable that comes with the GV850 device to the GV850, and connect the USB Type-A #1 connector to the development coCPUter. Once the connection is established and the device is powered on, if the drivers are correctly installed and the connections are secure, a COM port will be visible in the Windows Device Manager of the development coCPUter, or a /dev/ttyUSBx device node will be present in the Linux environment.

Use a command terminal tool, such as putty, to establish a connection with the UART Console port, setting the parameters to a baud rate of 115200, with 1 start bit, 8 bits of data, 1 stop bit, and no parity bit. Upon successful connection, authenticate using the username "root" and the password "root".

The USB-to-Serial driver file for Windows is named "CH341SerSetup.zip".

3.3.2. USB Port Debugging

The UART Console port allows for one connection, and the speed of file transfer is comparatively slow. The GV850 device is equipped with the USB Ethernet/RNDIS virtual network card capability, enabling SSH connections to the device for debugging purposes.

Initially, install the USB Ethernet/RNDIS virtual network card driver on the coCPUter to enable it to recognize the GV850 device's USB port as a virtual network card. Next, connect the Type-C end of the USB cable that comes with the GV850 device to the device itself, and connect the USB Type-A #2 connector to the development coCPUter. Provided that the driver installation is successful and the connection is secure, a USB Ethernet adapter will be visible in the Windows Device Manager, and a usbx network node will be present in the Linux environment.

The steps for installing the USB Ethernet/RNDIS virtual network card driver on the development coCPUter are as follows:

1 Step: Power up the device and connect the Type-C end of the USB cable. Initially, do not attach the USB Type-A #1 and USB Type-A #2 connectors to the coCPUter.

2 Step: Open the Device Manager on your coCPUter, and then connect the USB Type-A #2 connector to the coCPUter. Look for the new device that has been added in the Device Manager. The USB Type-A #2 connector may be recognized as a COM port, it might be identified as a different driver, or it could appear as an unrecognized device. If you are unable to recognize which device is the newly connected one, move on to Step 3.

Upon connecting the USB Type-A #2 connector, a new COM7 interface has been added in the coCPUter, as depicted in the figure below.

3 Step: Remove the USB Type-A #2 connector from the coCPUter and examine the Device Manager. Find out which device has been removed. If you are unable to identify which device has been removed, perform Step 2 again. If there is no new or missing device in the Device Manager during Steps 2 and 3, it is necessary to verify whether the coCPUter's USB ports are working correctly and to test with another USB port on the coCPUter. After you have determined the device node created by the USB Type-A #2 connector on the coCPUter, move on to Step 4.

Computer Management (Local)	> 🚯 Bluetooth	
✓	> 👰 Cameras	
> () Task Scheduler	> 📮 Computer	
> 🛃 Event Viewer	> 🔜 Disk drives	
> 🕺 Shared Folders	> 🔙 Display adapters	
> 🜆 Local Users and Groups	> 🙀 Human Interface Devices	
> Performance	> TIDE ATA/ATAPI controllers	
- Device Manager	> 🙀 Imaging devices	
✓ <a> Storage	> 🔤 Keyboards	
📅 Disk Management	Mice and other pointing devices	
> 🗟 Services and Applications	> Monitors	
	🗸 📮 Network adapters	
	Bluetooth Device (Personal Area Network)	
	Realtek 8821CE Wireless LAN 802.11ac PCI-E NIC	
	Realtek PCIe GbE Family Controller	
	TAP-Windows Adapter V9	
	WAN Miniport (IKEv2)	
	WAN Miniport (IP)	
	WAN Miniport (IPv6)	
	WAN Miniport (L2TP)	
	WAN Miniport (Network Monitor)	
	WAN Miniport (PPPOE)	
	WAN Miniport (PPTP)	
	WAN Miniport (SSTP)	
	V 💭 Ports (COM & LPT)	
	Prolific USB-to-Serial Comm Port (COM3)	
	H Home obb to Servi common (coms)	
	> 🚍 Print queues	
	> 🚍 Printers	
	> Processors	

4 Step: Examine the Vendor ID (VID) and Product ID (PID) of the device to confirm that the device node originated from the GV850/1 device. The VID for the USB Type-A #2 connector is 0525, and the PID is A4A2. The way to check is illustrated in the figure below:

5 Step: Right-click the device and choose "Update Driver Software." Continue by selecting "Let me pick from a list of available drivers on my coCPUter" and then "Browse." Select the folder where the driver files are located. Click "Next" to initiate the driver update process.

- 1	DESKTOP-	P-D2I0E6G					×
>	Audio	o inputs and outputs					~
>	Batter			~	Update Drivers - USB Serial Comm (COM7)		
>	8 Blueto				opute onvers - 038 Serial Comm (COMP)		
>	Q Camer						
>	Comp					2	
>	🕳 Disk d				How do you want to search for drivers	<u>(</u>	
>		ay adapters					
>		an Interface Devices					
>		TA/ATAPI controllers					
>		ing devices			\rightarrow Search automatically for drivers		
>	Keybo				Windows will search your computer for the b	est available driver and install it on	
>	-	and other pointing device	ces		your device.		
>	Monit						
~		ork adapters					
	1.00	luetooth Device (Persona					
		ealtek 8821CE Wireless LA					
		ealtek PCIe GbE Family Co	ontroller		\rightarrow Browse my computer for drivers	click the Browse my computer for driv	vers button to
		AP-Windows Adapter V9			Locate and install a driver manually.		vers button to
		VAN Miniport (IKEv2)	right click to pop up the window.			select the drivers file directory.	
		VAN Miniport (IP)	Click the Update driver button.				
		VAN Miniport (IPv6)					
		VAN Miniport (L2T	Update driver				
			Disable device				
		VAN Miniport (SST	Uninstall device				
~			Scan for hardware changes				
		roline LICR to Cori	Properties				
	🗭 US	ISB Serial Comm (COM7)					Cancel

	Audio inputs and outputs		Device Manager
			× More Actions
÷	Update Drivers - USB Serial Comm (COM7)	Click the Brows button, choose the driver file directory. and Click Next button.	Browse For Folder X Select the folder that contains drivers for your hardware.
	Browse for drivers on your computer		
	Search for drivers in this location:	/	This PC A JD Objects
	C:\Users\TESTCH\Downloads\mod-rndis-driver-w	ndows · Browse	> Desktop
	r ✓ Include subfolders		> 🖆 Documents
			 Downloads CH341SerSetup mod-rndis-driver-windows Music
	\rightarrow Let me pick from a list of available	<	
	This list will show available drivers compatible category as the device.	Folder: mod-rndis-driver-windows	
			OK Cancel
		Next	Cancel
П	Prolific USB-to-Serial Comm Port (COM	3)	

The page indicating successful driver update is as follows.

		×	
\leftarrow	Update Drivers - USB Ethernet/RNDIS Gadget #2		
	Windows has successfully updated your drivers		
	Windows has finished installing the drivers for this device:		
	USB Ethernet/RNDIS Gadget		
		Close	

6 Step: Within the Device Manager page, under the Ethernet adapters category, check whether the device is identified as a USB Ethernet/RNDIS Gadget# device. If yes, this indicates that the driver installation has been successful; if not, the installation has failed, and you may attempt the process again. If subsequent attempts to install the driver are unsuccessful, please seek help from technical support.

🛃 Computer Management				
File Action View Help				
🗢 🔿 🙇 📰 📓 🚺				
 Computer Management (Local) System Tools Task Scheduler Event Viewer Shared Folders Local Users and Groups Performance Device Manager Storage Disk Management Services and Applications 	 Computer Disk drives Disk drives Display adapters IDE ATA/ATAPI controllers Under the Network adapters category, there have an USB Imaging devices Imaging devices Keyboards Monitors Network adapters Bluetooth Device (Personal Area Network) Realtek 8821CE Wireless LAN 802.11ac PCI-E NIC Realtek 8821CE Wireless LAN 802.11ac PCI-E NIC Realtek R21CE Wireless LAN 802.11ac PCI-E NIC Realtek PCIe GbE Family Controller TAP-Windows Adapter V9 WAN Miniport (REV2) WAN Miniport (REV2) WAN Miniport (PPOE) WAN Miniport (PPPOE) WAN Miniport (PPTP) WAN Miniport (PPTP) WAN Miniport (SSTP) Porlific USB-to-Serial Comm Port (COM3) 			
	> 🛱 Print queues			

7 Step: Open the Ethernet adapter configuration page, and you will find a USB Ethernet/RNDIS Gadget adapter. On this page, you can adjust the settings for the adapter. As depicted in the figure below:

anize • Disable this network dev	rice Diagnose this connection Rename this connection View s	status of this connection Change settings of this connection
Disconnected WAN Miniport (PPTP)	aueclink 🔂 Unide	rnet 3 entified network Ethernet/RNDU/Gadget
2. Click Internet Protocol V	ernet adapter and select the Properties button in the /ersion 4 (TCP/IPv5), Click the Properties Button. The subnet mask, and click OK.	
0	0	3
Disable		Internet Protocol Version 4 (TCP/IPv4) Properties
Status Diagnose Bridge Connections Create Shortcut Pelete Rename Properties	Networking Sharing Connect using: USB Ethernet/RNDIS Gadget Configure This connection uses the following items: Client for Microsoft Networks Gos Packet Scheduler Configure This connection uses the following items: Client for Microsoft Networks Gos Packet Scheduler Configure Internet Protocol Version 4 (TCP/IPv4) Configure Internet Protocol Driver Configure Configure Configure Configure Configure This connection uses the following items:	General You can get IP settings assigned automatically if your network support this capability. Otherwise, you need to ask your network administrator for the appropriate IP settings. Qbtain an IP address automatically Uge the following IP address: IP address: IP address: IP address: IP address: IS 255.255.255.0 Default gateway: Optain DNS server address automatically Optain DNS server address automatically Uge the following DNS server addresses:

8 Step: Verify the network connectivity between the coCPUter and the device. Use the ping tool to do the test, as illustrated in the figure below:

G. Administrator:	1 <u></u> 1	\times
Microsoft Windows [Version 10.0.19041.208] (c) 2020 Microsoft Corporation. 保留所有权利。		^
C:\Users\Administrator>ping 192.168.1.1		
Pinging 192.168.1.1 with 32 bytes of data: Reply from 192.168.1.1: bytes=32 time<1ms TTL=64 Reply from 192.168.1.1: bytes=32 time<1ms TTL=64		
Ping statistics for 192.168.1.1: Packets: Sent = 3, Received = 3, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = Oms, Maximum = Oms, Average = Oms Control-C C:\Users\Administrator>		

The USB virtual network interface in the GV850 device has a default IPv4 address of 192.168.1.1, with a subnet mask of 255.255.255.0. The coCPUter must configure an address for the new USB Ethernet adapter, ensuring that the IPv4 address is within the same subnet as the device. After completing this step, the development coCPUter and the device will be able to communicate via the network. An example of how to set the address on the development coCPUter is provided below: IPv4 Address 192.168.1.100, Subnet 255.255.0

On the coCPUter, use the Ping tool to test whether the network configuration is correct.

\$ ping 192.168.1.1

After the coCPUter and the GV850 device communicate properly, you can use a SSH tool to log in to the device's backend for debugging. The network topology is shown below.

SSH Login Success Example:

The USB Ethernet/RNDIS driver file for Windows is named "mod-rndis-driver-windows.zip".

3.3.3. Debugging Tools

The GV850 device supports the rz and sz commands and file transfer protocols, such as ZMODEM/YMODEM/XMODEM , enabling the upload and download of files to the device via tools.

Additionally, the GV850 device supports the SCP and SSH commands, and it initiates the SSHD service at startup, facilitating connections from multiple clients.

3.3.4. Terminal Login

The default username/password for the Linux system of the GV850 is: root/root.

3.3.5. Internet Access to the Internet

There are two ways to access the Internet on the device: via LTE Cellular or USB Ethernet/RNDIS Gadget.

3.3.5.1. LTE Cellular Network

For details of how to use cellular to access the Internet, refer to the "LTE" section.

3.3.5.2. USB Ethernet/RNDIS Gadget Network

The previous chapters covered using the device's USB port to allow the coCPUter to connect to the device via a TCP/IP network for backend debugging. Based on this, further configuring the network settings of the coCPUter and the GV850 device can enable the GV850 to access the Internet through the USB port connected to the development coCPUter. The prerequisite is that the development coCPUter must be able to access the Internet. The steps are as follows:

Initially, connect the coCPUter to the Internet. Subsequently, connect the USB Type-A #2 connector to the coCPUter. Attach the Typc-C end to the GV850 device and power on the device.

Follow the configuration method described in the "USB Debugging" section to properly network the device with the coCPUter, ensuring that the GV850 device is reachable via Ping from the developer's coCPUter. Then, share the network adapter that provides Internet access on the coCPUter with the USB Ethernet/RNDIS Gadget Adapter generated by the GV850. For the topology diagram, refer to the "USB Debugging" section.

Example:

Taking a Windows 7 PC as an example,

1 Step: In Windows, sharing the local Internet connection from the adapter to the USB Ethernet adapter that is created by the GV850.

GV850 Software Development Guide

→ 🗠 ↑ 👻 > Control Panel > Netw	vork and Internet > Network C	onnections		
anize • Disable this network device	Diagnose this connection	Rename this connection	View status of this connection	Change settings of this connection
Disconnected WAN Miniport (PPTP)	wifi queclink Realtek 8821CE Wir	reless LAN 802	wr Network 213 Realtek PCIe GbE Family Controlle	r Ethernet 3 Unidentifued network USB Ethernet/RNDP Gao
		Interne All co	g Sharing at Connection Sharing low other network users to connect throi imputer's Internet connection	× ugh this
1. Find the Local Area Connect Right-click and select Propertie		ring tab.	ome networking connection: Ethernet 3 low other network users to control or dis aread Internet connection	able the
2. Check the box for "Allow oth this computer's Internet connec Select the target connection to	tion".	nect through	ared memor connection	Settings

2 Step: On the Windows system, check the IP address of the USB Ethernet adapter that has been created by the GV850 device.

3 Step: according to the information obtained in Step 2 to configure the IPv4 address and default gateway on the GV850 device.

In our example, the network segment is 192.168.137.0/24, so configure the IPv4 address of the GV850 device to 192.168.137.10. The command is as follows:

\$ ifconfig usb0 192.168.137.10 netmask 255.255.255.0

The default gateway should be configured as 192.168.137.1:

\$ ip route add default via 192.168.137.1

4 Step: Configure the DNS server settings on the GV850.

\$ vi /etc/resolv.conf

5 Step: In the GV850, test if the Internet network services are normal.

root@Queclink-GV850:~# ping www.baidu.com
PING www.baidu.com (183.2.172.185): 56 data bytes
64 bytes from 183.2.172.185: seq=0 ttl=52 time=7.352 ms
64 bytes from 183.2.172.185: seq=1 ttl=52 time=7.531 ms

6 Step: If the network is working properly on the GV850, you can then use pip to install Python packages.

root@Queclink-GV850:~# pip install wheel Collecting wheel
Downloading wheel-0.43.0-py3-none-any.whl (65 kB)
65 kB 180 kB/s
Installing collected packages: wheel
Successfully installed wheel-0.43.0
WARNING: Running pip as the 'root' user can result in broken permise
ironment instead: https://pip.pypa.io/warnings/venv
root@Queclink-GV850:~# 🗌

Caution: After the device is rebooted, the network configurations within the device will be lost. To access the Internet, you will need to repeat the aforementioned steps.

3.3.6. Modify the default IPv4 address of the USB network

When we need to modify the default USB network address of the device, we must log in to the device's backend and modify the DEFAULT_IP_ADDR variable in the /etc/init.d/S40network file. After modifying the file, run the sync command to write the changes to the flash memory. Then restart the device or run the following command:

\$/etc/init.d/S40network restart

This is helpful for debugging multiple devices on one coCPUter at the same time.

3.4. Custom Packages

Adding a new package to the Buildroot compilation suite is quite straightforward; simply follow the official instructions provided by Buildroot. Referring to the Queclink software package, here is a brief description of the process:

Package Path: package/queclink

Package Files: package/queclink/Config.in package/queclink/queclink.mk package/linux-tracker-app -> ../../queclink_custom/linux-tracker-app

Config.in is used by the menuconfig tool to configure and manage software packages; queclink.mk is used to compile software packages. The Config.in of a custom package needs to be referenced in the upper-level Config.in.

The source code path needs to be specified in the queclink.mk file. queclink.mk specifies the package source code as package/linux-tracker-app. package/linux-tracker-app is a soft link file that connects to the real source code path. The content of Config.in, the previous level of queclink, is as follows:

\$ cat package/Config.in
menu "Queclink custom Packages"

source	"package/queclink/Config.in'
dmenu	

After the above configuration file, you can use make menuconfig to select the custom software package and then compile it.

/home/gv850/gv850-framework/buildroot/.config - Buildroot 2022.02.7 Configuration	
Target packages Queclink custom Packages	
Queclink custom Packages	
BR2 PACKAGE QUECLINK:	
queclink-custom package.	
queeting ease and a second package.	
https://queclink-custom.xyz	
*) gueclink	
Symbol: BR2 PACKAGE QUECLINK [=y]	
Type : bool	
Prompt: queclink	
Location:	
-> Target packages	
-> Queclink custom Packages	
Defined at package/queclink/Config.in:1	
Selects: BR2_PACKAGE_CJSON [=y] && BR2_PACKAGE_LIBEVENT [=y] && BR2_PACKAGE_LIBGPIOD [=y] && BR2_PACKAGE_LIBUBDX [=y]	

3.5. Device logs

en

Logs are an essential part of development and debugging. The device environment provides two log systems, system logs and application logs. Currently, logs are stored in RAM memory files and cannot be saved permanently. They will be lost after the device is restarted. Automatic cycle overwriting is supported.

3.5.1. System log

The device has integrated the syslogd log service to collect system logs. It collects logs generated by the kernel and various system services. Logs are stored in the RAM file /var/log/messages and do not support persistent storage. They will be lost after the device is restarted.

Check the logs, \$ dmesg 0.000000] Booting Linux on physical CPU 0x0 0.000000] Linux version 5.15.67 (root@31f3ee1efbea) (arm-linux-gcc.br_real (Buildroot toolchains.bootlin.com-2021.11-1) 10.3.0, GNU ld (GNU Binutils) 2.36.1) #1 SMP PREEMPT Tue Mar 19 17:43:45 CST 2024 0.000000] CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d 0.000000] CPU: div instructions available: patching division code 0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache 0.000000] OF: fdt: Machine model: STMicroelectronics custom STM32CubeMX board openstlinux-5.15-yocto-kirkstone-mp1-v22.11.23

You can also use commands such as cat and tail to view: \$ tail _f /var/log/messages

φιαι	r - r variog/messages
Jan	1 00:00:43 Queclink-GV850 kern.err kernel: [34.954559] usb 2-2: device descriptor read/64, error -62
Jan	1 00:00:44 Queclink-GV850 kern.info kernel: [35.284660] usb 2-2: new low-speed USB device number 4
using	g ohci-platform
Jan	1 00:00:44 Queclink-GV850 kern.err kernel: [35.504566] usb 2-2: device descriptor read/64, error -62

Jan	1 00:00:44 Queclink-GV850 kern.err kernel: [35.834551] usb 2-2: device descriptor read/64, error -62
Jan	1 00:00:44 Queclink-GV850 kern.info kernel: [35.954691] usb usb2-port2: attempt power cycle

3.5.2.Application log

Currently, the Queclink application software uses the zlog log system. It is used to collect logs generated by the Queclink application. The logs are stored in the RAM file /var/log/ubus_app.log and do not support persistent storage. They will be lost after the device is restarted.

\$ tail -f /var/log/ubus_app.log 2000-01-01 01:34:28 187 <WARN> <batterymgr> get real percent:98.4615 from 4144 -- batt_order_tab_lookup() batt_per.c:78 2000-01-01 01:34:32 187 <WARN> <batterymgr> get real percent:98.4615 from 4144 -- batt_order_tab_lookup() batt_per.c:78 2000-01-01 01:34:36 187 <WARN> <batterymgr> get real percent:98.4615 from 4144 -- batt_order_tab_lookup() batt_per.c:78 2000-01-01 01:34:40 187 <WARN> <batterymgr> get real percent:98.4615 from 4144 -- batt_order_tab_lookup() batt_per.c:78 2000-01-01 01:34:40 187 <WARN> <batterymgr> get real percent:98.4615 from 4144 -- batt_order_tab_lookup() batt_per.c:78 2000-01-01 01:34:44 187 <WARN> <batterymgr> get real percent:98.4615 from 4144 -- batt_order_tab_lookup() batt_per.c:78

```
You can modify the log configuration file and then trigger a reload of the log configuration to dynamically change the log settings. The command is as follows:
```

The command format is ubus call module name set_logconf '{"file":"log configuration file"}'

Example:

\$ ubus call canobd set_logconf '{"file":"/etc/ubus_app_log_debug.conf"}'

Configuration file contents:

\$ cat /etc/ubus_app_log_debug.conf

[formats]

default_format = "%d(%F %T) %p <%V> %m -- %U() %f:%L%n"

[rules]

*.DEBUG "/var/log/ubus_app.log", 1MB*1; default_format

4. Interface and Driver

4.1. LED

There are 3 LEDs, which are controlled by GPIO.

Hardware resource list:

Pin Name	LED Name	Description	
		On, PG11 output high, read led	
PG11	Rower supply status LED	\$ gpioset 6 11=1	
POIL	Power supply status LED	Off, PG11 output low	
		\$ gpioset 6 11=0	
		On, PA8 output high, blue led	
PA8		\$ gpioset 0 8=1	
PAo	GPS signal LED	Off, PA8 output low	
		\$ gpioset 0 8=0	
		On, PE6 output high, green led	
DEC		\$ gpioset 4 6=1	
PE6	Network signal LED	Off, PE6 output low	
		\$ gpioset 4 6=0	

4.2. LTE

Depending on the model, the module model is EG915U-EC or EG915Q-NA. Regardless of the module model, it supports two usage modes: network card mode and UART module mode. The hardware block diagram is as follows:

Hardware resource list:

Pin Name Description	Remarks
----------------------	---------

PA15	LTE module power control	0:Power off
		1:Power on
PF5	LTE module power on/off control pin	3s low pulse power-on state reverses
PB7	LTE module wake-up CPU pin	0:Wake up CPU level
		1: Normal operating level
PE14	CPU wakes up LTE module pin	0: wake up the LTE module level
		1: Normal operating level
USART3	LTE module communicates with CPU UART	Device node: /dev/ttySTM3
		Baud rate: 115200
		Start bit: 1 bit
		Data bit: 8 bits
		Stop bit: 1 bit
		No checksum
USB1	LTE module communicates with CPU via	Device node: /dev/ttyUSBx
	USB port	
PA4	LTE module enables USB function on VBUS	0: Disable 5V boost, module VBUS voltage 0V
	pin	1: Turn on 5V boost, module VBUS voltage 5V
PE2	LTE module internal and external antenna	0: Connect to an external antenna
	switching pin	1: Connect to the built-in antenna
PE6	LTE module indicator, green	0: Turn off the light
		1: Turn on the light

If you are running the Queclink pre-installed software, close the selftask program before manual testing to avoid serial port resource conflicts.

\$ /etc/init.d/S99selftask stop

\$

4.2.1 UART Modem

When work as a UART module, use USART3, corresponding to the device node /dev/ttySTM3.

Reference testing commands as follows:

Set the baud rate to 115200bps and remove the incrnl attribute to avoid automatically converting input characters \r to \n. Remove the isig icanon echo echoe attribute to avoid output causing incorrect module command format +CME ERROR: 58 error.

\$ stty -F /dev/ttySTM3 ispeed 115200 ospeed 115200 cs8 -icrnl -isig -icanon -echo -echoe

Receive module uart output,

\$ cat /dev/ttySTM3 &

PA15 module power supply enable output high,

\$ gpioset 0 15=1

PF5 module startup signal,

\$ gpioset 5 5=1

\$ sleep 3

\$ gpioset 5 5=0

Receive the module startup URC message,

RDY

Turn off echo,	
\$ echo "ATE0" > /dev/ttySTM3	

Internal antenna or external antenna can be selected, through GPIO PE2 pin. The example is as follows: Select internal antenna:

S gpioset 4 2=1
Select external antenna:
S gpioset 4 2=0

The EG915U-EC and EG915Q-NA modules have Pin to Pin compatibility for wake-up and sleep pins, but the test commands are different.

WAKE_ LTE (DTR pin PE14) controls the sleep of the module, high level allows sleep, and low level wakes up the module,

\$ gpioset 4 14=0

EG915U-EC modem, Query the DTR pin status via command, if it is 0, sleep is not allowed,

\$ echo "AT+QGPIOR=25" > /dev/ttySTM3

+QGPIOR: 0

ОК

The EG915Q-NA module does not respond to AT commands when in sleep mode, but it can respond to AT commands when not in sleep mode. The CPU determines whether the module should sleep by controlling the wake-up pin of the LTE module, which allows for testing the functionality of this pin. The wake-up test command is as follows.

```
$ gpioset 0 4=0
$ echo "AT+QSCLK=1" > /dev/ttySTM3
$ sleep 4
$ echo "AT" > /dev/ttySTM3
```

ОК

If the module can reply, it means the module has not entered sleep mode.

DTR pin output high level,

```
$ gpioset 4 14=1
```

EG915U-EC modem, Query the DTR pin status via command, if it is 1, sleep is allowed

\$ echo "AT+QGPIOR=25" > /dev/ttySTM3

+QGPIOR: 1

ΟК

The EG915Q-NA module enters sleep mode and no longer responds to commands. The sleep test command is as follows.

\$ gpioset 0 4=0 \$ echo "AT+QSCLK=1" > /dev/ttySTM3 \$ sleep 4 \$ echo "AT" > /dev/ttySTM3

(No response with AT cmd.)

If the module can reply, it means the module has not entered sleep mode.

Send the AT+QSCLK=1 command to enable sleep function,

\$ echo "AT+QSCLK=1" > /dev/ttySTM3	
OK	

Sending any AT command will wake up the module, but at the appropriate time, it will enter sleep again unless the DTR pin output is at low level or the sleep function is turned off using the AT+QSCLK=0 command.

The module can notify the CPU through the level change of the WAKE_MCU (RI pin PB7). Due to the rapid level change, it is not possible to accurately obtain it using gpioget. Therefore, the example_input_intr tool can be used for monitoring it.

For example, using command to turn off the module,

\$ echo "AT+QPOWD" > /dev/ttySTM3
POWERED DOWN
Monitoring receives GPIO level change events,
\$ example_input_intr &
ype:1, code:261, value:0
ype:1, code:261, value:1
ype:1, code:261, value:0

In the EG915U-EC module, the Modem can be controlled to wake up the CPU GPIO pin using an AT command, which corresponds to the CPU's GPIO PB7, and on the Modem side, it is Pin 26. The AT command is AT+QGPIOW=26,0/1. The test example is as follows:

First, start the example_input_intr tool to monitor GPIO PB7 and run it in the background. When the status of GPIO PB7 changes, an event printout will be generated. \$ example_input_intr &

Control the module to input a low-level signal to GPIO PB7 through the command as follows. \$ echo "AT+QGPIOW=26,0" > /dev/ttySTM3 OK type:1, code:261, value:1

Control the module to input a high-level signal to GPIO PB7 through the command as follows. \$ echo "AT+QGPIOW=26,1" > /dev/ttySTM3

OK

type:1, code:261, value:0

When the device uses the EG915Q-NA module, the test commands are different. Control the module to input a low-level signal to GPIO PB7 through the command.

\$ AT+QGPIOCFG=1,28,1,3,0
\$ AT+QGPIOCFG=AT+QGPIOCFG=3,28,0
OK
type:1, code:261, value:1

Control the module to input a high-level signal to GPIO PB7 through the command.

\$ AT+QGPIOCFG=AT+QGPIOCFG=3,28,1 OK

type:1, code:261, value:0

Use the provided example_modem_at tool for command testing, as detailed in the "Example of Codes" section. The LTE module can serve as a wake-up source for system sleep, as detailed in the "System Sleep" section.

The following demonstrates the process of how to connect to the network, send and receive TCP data.

Check for correct SIM card reading,

\$ echo "AT+CPIN?" > /dev/ttySTM3 +CPIN: READY

ОК

Check CS status, \$ echo "AT+CREG?" > /dev/ttySTM3 +CREG: 0,1

ОК

Attach PS domain, \$ echo "AT+CGATT=1" > /dev/ttySTM3 OK \$ echo "AT+CGATT?" > /dev/ttySTM3

+CGATT: 1

ОК

Activate PDP,

```
GV850 Software Development Guide
```


\$ echo "AT+QIACT=1" > /dev/ttySTM3

ОК

Check the PDP status and obtained IP address,

\$ echo "AT+QIACT?" > /dev/ttySTM3

+QIACT: 1,1,3,"10.162.247.73","2408:8456:3040:AB7:1:1:A0D9:4891"

ОК

```
Ping domain name to check network connectivity,
$ echo "AT+QPING=1,\"www.baidu.com\"" > /dev/ttySTM3
OK
```

+QPING: 0,"157.148.69.74",64,313,255 +QPING: 0,"157.148.69.74",64,61,255 +QPING: 0,"157.148.69.74",64,61,255 +QPING: 0,"157.148.69.74",64,50,255 +QPING: 0,4,4,0,50,313,87

Open socket, using 218.17.50.142:971 server/port as the example, \$ echo "AT+QIOPEN=1,0,\"TCP\",\"218.17.50.142\",971,0,0" > /dev/ttySTM3

```
ОК
```

+QIOPEN: 0,0

Check the status of the socket and confirm that it is connected,

\$ echo "AT+QISTATE?" > /dev/ttySTM3

+QISTATE: 0,"TCP","218.17.50.142",971,0,2,1,0,0,"uart1"

ОК

Send the test string '12345' in HEX format, \$ echo "AT+QISENDEX=0,\"3132333435\"" > /dev/ttySTM3 SEND OK

The server responds with data '67890', and the module will notify the module with a URC message upon receiving the data,

+QIURC: "recv",0

At this point, the received data can be read from the cache and the actual length and data will be returned, \$ echo "AT+QIRD=0,1500" > /dev/ttySTM3 +QIRD: 5

67890

ОК

Close socket,

\$ echo "AT+QICLOSE=0" > /dev/ttySTM3
ОК
Check the status of the socket and confirm that it is closed,
\$ echo "AT+QISTATE?" > /dev/ttySTM3
ОК

4.2.2 Ethernet Adapter

The Modem's USB port is connected to the CPU's USB Host Controller. Setting the Modem USB VBUS to high will enable the Model's USB functionality. The GV850 device comes preloaded with the necessary drivers, allowing the module to be used as a network device in the Linux system.

It is important to note that the module can only establish one PDP connection at a time. If a PDP connection has been established in the module's UART modem mode, it needs to be closed first. Then, the modem can be used as an Ethernet Adapter.

If you are running the pre-installed software from Queclink, please shut down the selftask program before testing. This software will automatically start upon boot and create a PDP for the module. To avoid PDP conflicts, it is necessary to stop the program first.

\$ /etc/init.d/S99selftask stop

Restart the module.

\$ gpioset 0 15=1;sleep 1;gpioset 5 5=1;sleep 3;gpioset 5 5=0

Then, turn on the Modem USB VBUS 5V, and the module starts working in USB device mode. Taking the EG915U-EC model as an example, you can then see the system begin to enumerate and recognize the device.

\$ gpioset 0 4=1

642.617144] usb 1-1: new high-speed USB device number 2 using ehci-platform

642.817845] usb 1-1: config 1 interface 0 altsetting 0 endpoint 0x81 has an invalid bInterval 32, changing to 9

[642.836277] cdc_ether 1-1:1.0 usb1: register 'cdc_ether' at usb-5800d000.usbh-ehci-1, CDC Ethernet Device, 02:4b:b3:b9:eb:e5

- 643.020467] usbcore: registered new interface driver option
- 643.026565] usbserial: USB Serial support registered for GSM modem (1-port)
- 643.033358] option 1-1:1.2: GSM modem (1-port) converter detected
- 643.040808] usb 1-1: GSM modem (1-port) converter now attached to ttyUSB0
- 643.048384] option 1-1:1.3: GSM modem (1-port) converter detected
- 643.054752] usb 1-1: GSM modem (1-port) converter now attached to ttyUSB1
- 643.062429] option 1-1:1.4: GSM modem (1-port) converter detected
- 643.069557] usb 1-1: GSM modem (1-port) converter now attached to ttyUSB2
- 643.076386] option 1-1:1.5: GSM modem (1-port) converter detected
- 643.083580] usb 1-1: GSM modem (1-port) converter now attached to ttyUSB3

643.091082] option 1-1:1.6: GSM modem (1-port) converter detected

- 643.098129] usb 1-1: GSM modem (1-port) converter now attached to ttyUSB4
- 643.105420] option 1-1:1.7: GSM modem (1-port) converter detected
- 643.112104] usb 1-1: GSM modem (1-port) converter now attached to ttyUSB5
- 643.119807] option 1-1:1.8: GSM modem (1-port) converter detected
- 643.126915] usb 1-1: GSM modem (1-port) converter now attached to ttyUSB6

The Ismod command shows that the drivers option and usb_wwan have been automatically loaded.

\$ Ismod			
Module	Size	Used by	Tainted: G
option	49152	0	
usb_wwan	20480	1 option	

The VID/PID of the EG915U-EC and EG915Q-NA modules are different, which can be queried through the lsusb command. For the EG915U-EC module, the VID/PID is 2c7c:0901, and for the EG915Q-NA module, the VID/PID is 2c7c:6007.

\$ Isusb

ф ц — ц

ſ

model	PID/VID	Device Type	Device Node	Description
EG915U-EC	0x2c7c	network	usb1	ECM/RNDIS
	0x0901	TTY	/dev/ttyUSB0	AT Command
			/dev/ttyUSB1	DIAG
			/dev/ttyUSB2	MOS
			/dev/ttyUSB3	CP log
			/dev/ttyUSB4	AP log
			/dev/ttyUSB5	Modem
			/dev/ttyUSB6	GNSS
EG915Q-NA	0x2c7c	network	usb1	ECM/RNDIS
	0x6007	TTY	/dev/ttyUSB0	AT Command
			/dev/ttyUSB1	Log
			/dev/ttyUSB2	modem
			/dev/ttyUSB3	

The quectel-CM tool can be used to quickly establish a data connection. quectel-CM can be run in the background to prevent printing from affecting command line operations.

\$ quectel-CM

[01-01 16:19:05:810] OConnectManager Linux V1.6.5.1

[01-01_16:19:05:820] Find /sys/bus/usb/devices/1-1 idVendor=0x2c7c idProduct=0x901, bus=0x001, dev=0x002

[01-01_16:19:05:823] Auto find qmichannel = /dev/ttyUSB0

[01-01_16:19:05:823] Auto find usbnet_adapter = usb1

[01-01_16:19:05:825] netcard driver = cdc_ether, driver version = 5.15.67

[01-01_16:19:05:828] Modem works in ECM_RNDIS_NCM mode

•••

[01-01_16:47:38:086] ip link set dev usb1 up [01-01_16:47:38:104] busybox udhcpc -f -n -q -t 5 -i usb1 udhcpc: started, v1.35.0 [01-01_16:47:38:143] AT< +QNETDEVSTATUS: 1 udhcpc: broadcasting discover udhcpc: broadcasting select for 10.141.9.199, server 192.168.1.1 udhcpc: lease of 10.141.9.199 obtained from 192.168.1.1, lease time 30840 [01-01_16:47:38:388] deleting routers [01-01_16:47:38:444] adding dns 120.80.80.80 [01-01_16:47:38:444] adding dns 221.5.88.88 ...

After the data connection is successfully established, you can query that the local network device usb1 has obtained the assigned IP address.

\$ ifconfig u	sb1
usb1	Link encap:Ethernet HWaddr 02:4B:B3:B9:EB:E5
	inet addr:10.69.160.209 Bcast:10.69.160.255 Mask:255.255.255.0
	inet6 addr: 2408:8456:3010:9093:4b:b3ff:feb9:ebe5/64 Scope:Global
	inet6 addr: fe80::4b:b3ff:feb9:ebe5/64 Scope:Link
	UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
	RX packets:11 errors:0 dropped:0 overruns:0 frame:0
	TX packets:23 errors:0 dropped:0 overruns:0 carrier:0
	collisions:0 txqueuelen:1000
	RX bytes:1871 (1.8 KiB) TX bytes:2977 (2.9 KiB)

Query the routing table and you can see that the gateway address has been obtained.

\$ route –n						
Kernel IP routin	g table					
Destination	Gateway	Genmask		Flags M	etric Ref	Use Iface
0.0.0	10.69.160.1	0.0.0.0	UG	0	0	0 usb1
10.69.160.0	0.0.0	255.255.255.0	U	0	0	0 usb1

The DNS server address has also been obtained. \$ cat /etc/resolv.conf nameserver 120.80.80.80 # usb1 nameserver 221.5.88.88 # usb1

You can test the connectivity of the network.

\$ ping baidu.com
PING baidu.com (39.156.66.10): 56 data bytes
64 bytes from 39.156.66.10: seq=0 ttl=48 time=73.783 ms
64 bytes from 39.156.66.10: seq=1 ttl=48 time=57.459 ms

4.3. GNSS

Module model: UBX_ M10050, connected through UART. It uses USART6, which corresponds to /dev/ttySTM6. It supports u-blox and NMEA protocols.

硬件资源列表:

Pin Name	Description	Remarks				
PD13	GNSS module power control pin	0: Power off				
PDIS	GNSS module power control pin	1: Power on				
		0: Detected that an external antenna is inserted				
PB2	GNSS module built-in, external antenna	1: No external antenna detected				
PDZ	detection pin.	For this function test, the GPS chip must be powered				
		on, otherwise the test will be invalid.				
		Device node: /dev/ttySTM6				
		Baud rate: 38400				
USART6	GNSS module and CPU communication	Start bit: 1bit				
USARTO	port	Data bit: 8bits				
		Stop bit: 1bit				
		No checksum				

The reference testing commands are as follows:

Set the baudrate (38400 by default for M10050),

\$ stty -F /dev/ttySTM6 ispeed 38400 ospeed 38400 cs8

PD13 power supply enable output high level

\$ gpioset 3 13=1

Receive the NMEA data sent by the GPS module

\$ cat /dev/ttySTM6

\$GNVTG,,T,,M,0.002,N,0.005,K,D*3F

\$GNGGA,041722.00,2234.41319,N,11356.88217,E,2,12,0.52,111.9,M,-2.7,M,,*5A

\$GNGSA,A,3,11,15,24,20,23,29,05,13,18,,,,0.97,0.52,0.82,1*06

\$GNGSA,A,3,09,36,10,34,05,11,,,,,,0.97,0.52,0.82,3*0F

\$GNGSA,A,3,07,13,28,02,06,59,16,40,27,09,30,20,0.97,0.52,0.82,4*0E

\$GNGSA,A,3,,,,,,,0.97,0.52,0.82,5*06

(...)

Additionally, NMEA data can be forwarded to RS232_<N> serial port, and then open RS232 through the u-center tool to more intuitively parse NMEA data. The following example is to forward NMEA data to RS232_2 serial ports.

Set RS232_2 baud rate to same 38400: \$ stty -F /dev/ttySTM2 ispeed 38400 ospeed 38400 cs8 Forward the data to RS232_2: \$ cat /dev/ttySTM6 > /dev/ttySTM2

Then select the correct COM port and baud rate in the u-center tool to start receiving and parsing data.

Linux system can also provide parsing and control tools that support multi-protocol such as NMEA and u-blox through the integration of gpsd software. For more information on how to use the tools, please refer to the following website:

cgps and gpsmon tools can instantly parse and display positioning data. cgps receives and parses JSON data containing positioning data information provided by gpsd services. And gpsmon directly parses and displays the raw data of the GPS module. Depending on the protocol supported by the module, choose to use u-blox or NMEA protocol accordingly.

\$ cgps

https://gpsd.io/

								-Seen 3	7/Used	1 28 ₇
Time	2023-09-2	LT03:01:38.0	000Z (18)	GNS	SS	PRN	Elev	Azim	SNR	Use
Latitude	22.5	7354400 N		GP	5	5	41.0	38.0	43.0	Y
Longitude	113.94	1796870 E		GP	11	11	28.0	124.0	30.0	Y
Alt (HAE,	MSL) 346	.220, 355	5.121 ft	GP	13	13	57.0	32.0	45.0	Y
Speed	0.0	l mph		GP	15	15	71.0	292.0	46.0	Y
Track (tru	e, var):	0.0, -3.0	deg	GP	18	18	22.0	323.0	39.0	Y
Climb	-8.2	7 ft/min		GP	20	20	25.0	71.0	41.0	Y
Status	3D DGPS	S FIX (7 sec	s)	GP	23	23	12.0	289.0	37.0	Y
Long Err	(XDOP, EPX)	0.38, +/-	4.7 ft	GP	24	24	30.0	173.0	40.0	Y
Lat Err	(YDOP, EPY)	0.35, +/-	4.4 ft	GP	29	29	47.0	258.0	44.0	Y
Alt Err	(VDOP, EPV)	0.82, +/-	5.2 ft	GA	3	303	78.0	330.0	45.0	Y
2D Err	(HDOP, CEP):	0.50, +/-	3.1 ft	GA	8	308	38.0	235.0	41.0	Y
3D Err	(PDOP, SEP):	0.96, +/-	15.0 ft	GA	34	334	66.0	106.0	46.0	Y
Time Err	(TDOP):	0.56		GA	36	336	17.0	132.0	39.0	Y
Geo Err	(GDOP):	1.11		BD	1	401	48.0	121.0	42.0	Y
Speed Err	(EPS)	+/- 0.2 mp	bh	BD	3	403	65.0	190.0	44.0	Y
Track Err	(EPD)	n/a		BD	6	406	44.0	180.0	40.0	Y
Time offse	et	-748330839	226498000	BD	7	407	22.0	197.0	36.0	Y
sGrid Squar	e	0L62xn37		BD	8	408	48.0	6.0	41.0	Y
-More				LMOI	re	-				
,"gnssid":2	,"svid":34,"	nealth":1},	["PRN":336	, "e	l":1	7.0,"	az":13	2.0,"ss	":39.0),"us
	ssid":2,"svi									

\$ gpsmon

The results of parsing data using the u-blox protocol:

Ch	PRN	Az	Eι	S/N	Flag	U	ECEF Pos:		
0	5	37	41	47	191f	Y	ECEF Vel:		
1	11	124	29	32	091f	Y			
2	13	33	58	47	091f	Y	LTP Pos:		
3	15	290	71	48	091f	Y	LTP Vel:		
4	18	323	21	39	091f	Y	Pressue destruction		
5	20	71	25	41	091f	Y	Time:		
6	23	288	11	39	091f	Y	Time GPS:	Day:	
7	24	173	30	42	091f	Y			
8	29	260	47	46	091f	Y	Est Pos Err	m Est Vel Err	m/s
9	127	257	20	40	1a17		PRNs: ## PDOP: xx.	x Fix 0x Flags	0x
10	128	237	46	44	1a17			- NAV_SOL	
11	129	149	60	0	0701				
12	137	149	60	43	1a07		DOP [H] 0.5 [V]	0.8 [P] 1.0 [T]	0.6 [G] 1.
13	213	327	78	45	091f	Υ	L	- NAV_DOP	
14	218	234	38	40	091f	Y			
15	223	321	2	0	1210		TOFF: > 1 day	PPS:	N/A
		NAV-	SAT						

\$ gpsmon –n

The results of parsing data using the NMEA protocol:

Fin	1e :	2023	- 09 - 2	21T(93:0	92:2	29.000Z Lat: 22 34.41300 Cooked TPV		
GF	ZDA	GPG	GA GF	PRM	C G	PGS	A GPGBS GPGSV ————————————————————————————————————		
S١	/ID	PRN	Az	Eι	SN	HU	Time: 030229.00	Time:	030229.00
GP	5	5	38	41	44	Y	Latitude: 2234.4130 N	Latitude:	2234.4130
GP	13	13	32	57	45	Y	Longitude: 11356.8779 E	Longitude:	11356.8779
GP	15	15	293	71	46	Y	Speed: 0.0078	Altitude:	106.85
GP	18	18	323	22	40	Y	Course: 0.000	Quality:	2 Sats: 32
GP	20	20	72	24	40		Status: A FAA:	HDOP:	0.50
GP	23	23	289	12	39	Y	MagVar: -3.0 W	Geoid:	
GP	24	24	173	31	40	Y	RMC		GGA
GP	29	29	258	47	44	Y			
GP	0	0	149	60	40	Ν	Mode: A3 Sats: 5 13 15 +	UTC:	RMS:
GP	11	11	125	28	22	Ν	DOP H=0.5 V=0.8 P=1.0	MAJ:	MIN:
GP	30	30	44	5	0	N	TOFF: > 1 day	ORI:	LAT:
SB1	27	40					PPS: N/A	LON:	ALT:
	-v	— GS	SV —				GSA + PPS		GST

Check u-blox version:

\$ ubxtool -p MON-VER

UBX-MON-VER:

swVersion ROM SPG 5.10 (7b202e)

hwVersion 000A0000

extension FWVER=SPG 5.10

extension PROTVER=34.10

extension GPS;GLO;GAL;BDS

extension SBAS;QZSS

WARNING: protVer is 10.00, should be 34.10. Hint: use option "-P 34.10"

UBX-NAV-PVT:

iTOW 357228000 time 2023/9/21 03:13:30 valid x37 tAcc 24 nano -443396 fixType 3 flags x3 flags2 xea numSV 32 lon 1139479540 lat 225735412 height 110133 hMSL 112846 hAcc 580 vAcc 1212 velN -1 velE 2 velD 17 gSpeed 2 headMot 0 sAcc 112 headAcc 17333086 pDOP 103 reserved1 0 16476 12118 headVeh 3102272 magDec 0 magAcc 0 (...)

You can use the following commands to perform cold start and calculate the time it takes from no positioning to positioning by the status change of the cgps monitoring tool:

\$ ubxtool -p COLDBOOT -P 34.10

Ĩ									-Seen 4	0/Used	1 157
Time	n/a (18)			18)	GN:	SS	PRN	Elev	Azim	SNR	Use
Latitude	n/a				GP	5	5	38.0	53.0	42.0	Y
Longitude	n/a				GP	6	6	0.0	0.0	25.0	Y
Alt (HAE,	MSL)	n/a,	n/a	a l	GP	11	11	19.0	133.0	39.0	Y
Speed	n/a				GP	13	13	45.0	31.0	46.0	Y
Track (tru	ıe, var):		n/a	a deg	GP	15	15	68.0	330.0	47.0	Y
Climb	n/a				GP	18	18	32.0	325.0	41.0	Y
Status	NO FIX	(14 sec	s)		GP	20	20	20.0	83.0	37.0	Y
Long Err	(XDOP, EPX)	0.54,	n/a		GP	23	23	17.0	299.0	36.0	Y
Lat Err	(YDOP, EPY)	0.47,	n/a		GP	24	24	42.0	167.0	44.0	Y
Alt Err	(VDOP, EPV)	0.75,	n/a		GP	29	29	42.0	241.0	44.0	Y
2D Err	(HDOP, CEP):	0.50,	n/a		SB:	120	33	50.0	322.0	47.0	Y
3D Err	(PDOP, SEP):	0.90,	n/a		SB:	121	34	60.0	128.0	46.0	Y
Time Err	(TDOP):	0.60			SB:	121	34	19.0	164.0	40.0	Y
Geo Err	(GDOP):	1.36			SB:	123	36	10.0	139.0	38.0	Y
Speed Err	(EPS)	n/a			SB:	146	59	52.0	126.0	45.0	Y
Track Err	(EPD)	n/a			GP	7	7	0.0	0.0	24.0	N
Time offse	et	-748330	840.858	3298719	GP	30	30	0.0	0.0	24.0	Ν
sGrid Squar	re l	n/a			SB:	125	38	56.0	35.0	46.0	Ν
└-More					Mo	re	. q—		0		
{"class":"TF	V","device":'	'/dev/tt	ySTM6"	,"mode"	:1,	'lea	pseco	nds":1	8}		
{"class":"TF	V","device":'	'/dev/tt	ySTM6"	,"mode"	:1,	"lea	pseco	nds":1	8}		
{"class":"TF	V","device":'	'/dev/tt	ySTM6"	,"mode"	:1,	'lea	pseco	nds":1	8}		

					-Seen 3	6/Used	147
Time 2023-09-2	1T03:29:28.000Z (18)	GNSS	PRN	Elev	Azim	SNR	Use
Latitude 22.5	7353983 N	GP 5	5	37.0	54.0	38.0	Y
Longitude 113.9	4796800 E	GP 11	11	18.0	134.0	39.0	Y
Alt (HAE, MSL) 364	.501, 373.360 ft	GP 13	13	44.0	31.0	45.0	Y
Speed 0.0	1 mph	GP 15	15	67.0	332.0	45.0	Y
Track (true, var):	n/a deg	GP 18	18	33.0	325.0	41.0	Y
Climb -19.6	9 ft/min	GP 20	20	19.0	84.0	40.0	Y
Status 3D FIX	(58 secs)	GP 23	23	17.0	300.0	37.0	Y
Long Err (XDOP, EPX)	0.51, +/- 25.2 ft	GP 24	24	43.0	167.0	42.0	Y
Lat Err (YDOP, EPY)	0.52, +/- 25.6 ft	GP 29	29	41.0	240.0	43.0	Y
Alt Err (VDOP, EPV)	0.76, +/- 57.3 ft	SB120	33	50.0	323.0	46.0	Y
2D Err (HDOP, CEP):	0.50, +/- 31.2 ft	SB121	34	60.0	129.0	45.0	Y
3D Err (PDOP, SEP):	0.91, +/- 56.7 ft	SB121	34	19.0	164.0	40.0	Y
Time Err (TDOP):	0.78	SB123	36	9.0	139.0	37.0	Y
Geo Err (GDOP):	1.66	SB147	60	45.0	243.0	44.0	Y
Speed Err (EPS)	+/- 35.0 mph	GP 17	17	0.0	0.0	21.0	N
Track Err (EPD)	n/a	SB125	38	0.0	0.0	45.0	N
Time offset	-748330841.148430094	SB126	39	0.0	0.0	46.0	N
sGrid Square	0L62xn37	SB127	40	20.0	257.0	38.0	N
└─More		More	. q—				
11.1000,"altMSL":113.800	0,"alt":113.8000,"epx	":7.676	,"epy	":7.81	4,"epv"	:17.48	0,"m
agvar":-3.0,"speed":0.00	3,"climb":-0.100,"eps	":15.63	,"epc	":34.9	6,"geoi	dSep":	-2.7
00,"eph":9.500,"sep":17.	290}						

4.4. CAN Module

4.4.1 GV80 CAN OBD Module

GV850 uses the integrated CAN OBD module to process CAN messages and vehicle-related data.

The SPC582B60E1 module is connected to the CPU via USART7 UART, corresponding to /dev/ttySTM7. It supports vehicle-mounted CAN protocols such as J1939, J1708, FMS, and OBD. The module automatically parses vehicle parameters for host queries and supports a wide range of vehicle types, covering most mainstream models available on the market.

Additionally, it includes a Tachograph Reader function for reading Tachograph data and downloading driving record files remotely. The module also offers KLine functionality.

Hardware resource list:

Pin Name	Description	Remarks				
PG3	CAN module power control pin	0: Power off				
rus		1: Power on				
	The device 5V boost is enabled, and this	1: Enable				
PA4	function needs to be enabled for the CAN					
	module to work properly.	0: Disable				
PG1	CAN module wakes up the CPU pin	0: CAN module is in working state				
PGI	CAN module wakes up the CPO pin	1: CAN module is in sleeping state				
		Device node: /dev/USART7				
		Baud rate: 115200				
USART7	CAN module and CPU communication	Start bit: 1bit				
USART7	port	Data bit: 8bits				
		Stop bit: 1bit				
		No checksum				

If the pre-installed Queclink software is running, please shut down the canobd process before testing. This software will automatically start upon boot and open the serial port /dev/ttySTM7. To prevent conflicts, it is necessary to stop the program first.

\$ /etc/init.d/S70canobd stop

Restart the CAN module. \$ gpioset 6 3=0;sleep 3;gpioset 6 3=1

Set the baud rate (default) to 115200, and because the module serial port data is binary, the parameter raw needs to be used when using the stty tool to set it. Otherwise, the default tty attribute may overwrite the read data, such as the enabled icrnl attribute by default, which will overwrite 0x0D with 0x0A.

\$ stty -F /dev/ttySTM7 ispeed 115200 ospeed 115200 cs8 raw

PG3 CAN MCU Power supply output enable:

\$ gpioset 6 3=1

PA4 5V voltage increase enable:

\$ gpioset 0 4=1

On Linux system, the read and written binary data can be edited by using the hexedit tool, and then read and write by using the dd tool.

For example, write the binary command to be sent into the file out:

\$ touch out

\$ hexedit out

00000000	F5	B 3	10	01	3B	F6	Π
00000010							
00000020							
00000030							
00000040							
00000050							
00000060							
0000070							

Start reading in advance (at the background) and write the read data to the in file,

\$ dd if=/dev/ttySTM7 of=in &

Send the out file, \$ dd of=/dev/ttySTM7 if=out

Use the hexdump tool to display the read binary data.

\$ hexdump -C in

root@Queclink-GV850:/tmp# hexdump -C in	
00000000 f5 b4 14 01 49 30 08 0d a8 f6 0000000a	10
root@Queclink-GV850:/tmp# 🗌	

The module command/protocol description is detailed in the document "[24-01-03] CAN-Logistic v3 protocol XON-XOFF.pdf".

We have provided a CAN module testing tool to assist with testing. The name of the tool is example_external_can. This tool can send raw frames, receive module data, and query basic information. For detailed information, refer to the "Example of Codes" section.

We recommend using the CANOBD core interface to test the CAN module. For details, refer to the "Canobd" section in the "Queclink Software Module" chapter.

The module provides three configurable GPIO outputs, where OUT2 is connected to PG1 of the CPU and can notify the CPU of events. The testing method is as follows:

example_input_intr tool can be used to monitor PG1 event, event code is 257, event value 0 indicate CAN module enter sleep, 1 indicate CAN module is wroking.

\$ example_input_intr

type:1, code:257, value:0

type:1, code:257, value:1

If the module has no serial port data and CAN bus data within 60 seconds, the CAN module will enter sleep mode and receive the event type:1, code:257, value:0. The CPU will wake up the CAN module by sending serial port data to it, and will receive the event type:1, code:257, value:1.

The CAN module can serve as a wake-up source for system sleep. On hardware, OUT2 is connected to PG1 of CPU as the wake-up source. The OUT2 function is configurable, with the default function being 'vehicle's buses active',

6.6.9. Setting outputs functions

CAN-Logistic has three binary outputs (bistable), which can provide various signals related to vehicle state. Default outputs functions are:

- ignition on for OUT1
- vehicle's buses active for OUT2
- notification about events for OUT3

Outputs may be positive (high level voltage when active), or negative (shorted to ground when active) - check hardware information.

The module will enter sleep on its own and pull PG1 up. When the module is awakened, pressing the CAN sync button will pull PG1 down_o

The module can be used as a system sleep wake-up source, supporting up to Stop mode. For test methods, refer to the "System Sleep" section.

4.4.2 GV8551 Raw CAN FD

The GV851 device features two CAN FD transceiver channels, replacing the CAN OBD module in the GV850 device. CAN data services are handled by the CPU. The stm32mp133 main controller has two built-in CAN FD controllers. Both CAN modules (FDCAN1 and FDCAN2) comply with ISO 11898-1 (CAN protocol specification version 2.0 part A, B) and the CAN FD protocol specification version 1.0. For details on CAN FD, refer to the official manual of the stm32mp133 ST.

The TX/RX PIN of the CAN FD controller is connected to the CANTJA1042 transceiver, and the IO configuration is as follows:

Pin Name	Description	Remarks
PA14	CAN communication red LED	0: Off
		1: On
PD2	CAN communication green LED	0: Off
		1: On
PE3	CANFD1 RX	CANFD module pins inside the chip
PG10	CANFD1 TX	CANFD module pins inside the chip
PB5	CANFD2 RX	CANFD module pins inside the chip
PB13	CANFD2 TX	CANFD module pins inside the chip
PA4	Onboard 5V boost enable control pin, CANFD	0: Disable
	data transmission and reception needs to enable	1: Enable
	this function	
PG3	Onboard 5V boost enable control pin, CANFD	0: Disable power supply
	data transmission and reception needs to enable	1: Enable power supply
	this function	
PG5	CANFD1 transceiver working state selection pin	0: CANFD transceiver is working
		1: CANFD transceiver is sleeping
PH13	CANFD2 transceiver working state selection pin	0: CANFD transceiver is working
		1: CANFD transceiver is sleeping
PH6	Working mode switch button	0: button pressed
		1: button released
PF9(UART8)	K-LINE communication port RX pin	Device node: /dev/ttySTM4
PE1(UART8)	K-LINE communication port TX pin	V1.02 and earlier versions only support RX.
		Devices with hardware versions greater than
		this support TX and RX

Device node: /dev/ttySTM4			
		Device node: /dev/ttySTM4	

For CAN communication test, please connect the two CAN communication ports through a 60 ohm resistor to form a loopback test link as shown in the figure below. The physical wiring is as shown below.

Enable 5V boost (PA4),

\$ gpioset 0 4=1

Enable the CAN transceiver (PG3) power supply, \$ gpioset 6 3=1

Set the CAN1 transceiver to working state (PG5), \$ gpioset 6 5=0

Set the CAN2 transceiver to working state (PH13), \$ gpioset 7 13=0

View the system CAN devices,

Set the CAN1 (device can0) baud rate, \$ ip link set can0 type can bitrate 100000 dbitrate 200000 fd on

Set the CAN2 (device can1) baud rate, \$ ip link set can1 type can bitrate 100000 dbitrate 200000 fd on

Enable CAN1, \$ ip link set can0 up

Enable CAN2. \$ ip link set can1 up

After the settings are complete, use the can-utils tool installed on the system to test it.

CAN2 uses the candump tool to receive data and runs in the background. \$ candump can1 &

CAN1 uses the cansend tool to send test data. \$ cansend can0 123#1122334455667788

The candump tool running in the background will print the data received by CAN2.

can1 123 [8] 11 22 33 44 55 66 77 88

Check CAN1 status information,

\$ ip -details link show can0

3: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 72 qdisc pfifo_fast state UP mode DEFAULT group default qlen 10 link/can promiscuity 0 minmtu 0 maxmtu 0

can <FD> state ERROR-ACTIVE (berr-counter tx 0 rx 25) restart-ms 0

bitrate 100000 sample-point 0.875

tq 41 prop-seg 104 phase-seg1 105 phase-seg2 30 sjw 1 brp 1

m_can: tseg1 2..256 tseg2 2..128 sjw 1..128 brp 1..512 brp_inc 1

dbitrate 200000 dsample-point 0.875

dtq 208 dprop-seg 10 dphase-seg1 10 dphase-seg2 3 dsjw 1 dbrp 5

m_can: dtseg1 1..32 dtseg2 1..16 dsjw 1..16 dbrp 1..32 dbrp_inc 1

clock 24000000 numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs 65535 parentbus platform parentdev 4400e000.can

The GV851 device can use the SocketCAN interface provided by the Linux system for communication. For more information about SocketCAN, see the official website: <u>https://www.kernel.org/doc/html/latest/networking/can.html.</u>

4.5. G-sensor

Sensor model: ICM-40607-K, connected through SPI bus. The ICM-40607-K is a 6-axis MEMS MotionTracking device that combines a 3-axis gyroscope and a 3-axis accelerometer. The system provides IIO driver and device node /sys/bus/iio/devices/iio: device2.

硬件资源列表:

Pin Name	Description	Remarks
		0: BLE module message is ready or a Bluetooth event
PC13	G-sensor module wakes up the CPU pin	occurs
		1: BLE module has no message or event
SPI4	G-sensor module and CPU communication port	SPI communication is managed by the II0 system Device node: /sys/bus/iio/devices/iio:device2

For current GV850, after power on, the G-sensor is turned on by default.

Use the provided example_gsensor tool for testing, as detailed in the "Example of Codes" section.

Check the IIO driver corresponding to G-sensor.

\$ Ismod	
Module	Size Used by Tainted: G
inv_CPU_iio_spi	16384 0
inv_CPU_iio	73728 2 inv_CPU_iio_spi

When the system enters the Standby mode, the SPI state cannot be maintained. After exiting the Standby mode, the SPI needs to be reinitialized. You can reinitialize the SPI by unloading and loading the driver. The method is as follows:

Remove the driver:
\$ rmmod inv_CPU_iio_spi
[1296.267959] inv-CPU-iio-spi spi0.0: inv-CPU-iio module removed.
\$ rmmod inv_CPU_iio
Reload the driver:
\$ modprobe inv_CPU_iio
\$ modprobe inv_CPU_iio_spi

<pre>[1348.978562] inv_CPU: inv_CPU_probe: power on. [1349.093593] inv_CPU: id name = icm42600 [1349.096600] inv_CPU: whoami= dd [1349.219978] inv_CPU: inv_CPU_initialize: initialize result is 0 [1349.230144] inv_CPU: wakeup_source is created successfully [1349.243890] inv-CPU-iio-spi spi0.0: icm42600 ma-kernel-9.3.3-test2 is ready to go!</pre>	[1348.975145] inv_CPU: inv_CPU_probe: power on here.
[1349.096600] inv_CPU: whoami= dd [1349.219978] inv_CPU: inv_CPU_initialize: initialize result is 0 [1349.230144] inv_CPU: wakeup_source is created successfully	[1348.978562] inv_CPU: inv_CPU_probe: power on.
[1349.219978] inv_CPU: inv_CPU_initialize: initialize result is 0 [1349.230144] inv_CPU: wakeup_source is created successfully	[1349.093593] inv_CPU: id name = icm42600
[1349.230144] inv_CPU: wakeup_source is created successfully	[1349.096600] inv_CPU: whoami= dd
	[1349.219978] inv_CPU: inv_CPU_initialize: initialize result is 0
[1349.243890] inv-CPU-iio-spi spi0.0: icm42600 ma-kernel-9.3.3-test2 is ready to go!	[1349.230144] inv_CPU: wakeup_source is created successfully
	[1349.243890] inv-CPU-iio-spi spi0.0: icm42600 ma-kernel-9.3.3-test2 is ready to go!
[1349.250175] inv_CPU: Data read from FIFO	[1349.250175] inv_CPU: Data read from FIFO

Enter the driver sysfs directory, and you can see the interface provided by the driver: \$ cd /sys/bus/iio/devices/iio:device2

Read the value of the IMU on-chip register. Because the on-chip registers are mainly divided into Bank0 and Bank4, they will be printed separately. For detailed meaning of the registers, see "DS-000407 ICM-40607-K v1.0 for Queclink.pdf".

cat debug_reg_dump
nk 0
0: 0x0
1: 0x0
2: 0x0
nk 4
40: 0xa2
41: 0x85
46: 0x45
47: 0x5b

The G-sensor driver provides two interfaces, debug_reg_write_addr and debug_reg_write (the interface parameters are in decimal), which can modify the register values. Because the registers mentioned above are divided into Bank0 and Bank4, you need to switch to the corresponding Bank before modifying the addr register value.

Writing 4 to register 0x76 switches to Bank4. \$ echo 118 > debug_reg_write_addr; echo 4 > debug_reg_write

Then you can modify the 4Ah (74) register of Bank4 and write 0xC8 (200). \$ echo 74 > debug_reg_write_addr; echo 200 > debug_reg_write

Similarly, before modifying the 0x57 (87) register of Bank0, you need to switch to Bank0 first.

\$ echo 118 > debug_reg_write_addr; echo 0 > debug_reg_write

\$ echo 87 > debug_reg_write_addr; echo 5 > debug_reg_write

The module supports the vibration wake-up (WAKE ON MOTION) function. INT1 is connected to the CPU via GPIO PC13 and can be used as a system sleep wake-up source.

Enable the vibration wake-up function.

\$ echo 1 > event_motion_detect_enable		
[.	74.262869] inv_CPU: Motion Detect Enabled	

However, because the original driver enables UI_DRDY_INT1_EN in bit3 of the INT_SOURCE0 register after enabling vibration wake-up, the interrupt will be triggered continuously and needs to be turned off.

Addro Serial Reset	e: INT_SOURCE0 ess: 101 (65h) I IF: R/W t value: 0x10 : Domain: SCLK_UI	Califallina	
BIT	NAME	FUNCTION	
7	-	Reserved	
6	UI_FSYNC_INT1_EN	0: UI FSYNC interrupt not routed to INT1 1: UI FSYNC interrupt routed to INT1	
5	PLL_RDY_INT1_EN	0: PLL ready interrupt not routed to INT1 1: PLL ready interrupt routed to INT1	
4	RESET_DONE_INT1_EN	0: Reset done interrupt not routed to INT1 1: Reset done interrupt routed to INT1	
3	UI_DRDY_INT1_EN	0: UI data ready interrupt not routed to INT1 1: UI data ready interrupt routed to INT1	
2	FIFO_THS_INT1_EN	0: FIFO threshold interrupt not routed to INT1 1: FIFO threshold interrupt routed to INT1	
1	FIFO_FULL_INT1_EN	0: FIFO full interrupt not routed to INT1 1: FIFO full interrupt routed to INT1	
0	UI_AGC_RDY_INT1_EN	0: UI AGC ready interrupt not routed to INT1 1: UI AGC ready interrupt routed to INT1	

Only the WOM_*** part of INT_SOURCE1 is kept as the interrupt source.

14.52 INT_SOURCE1

Name	e: INT_SOURCE1		
Addre	ess: 102 (66h)		
Serial	IF: R/W		
Reset	t value: 0x00		
Clock	Domain: SCLK_UI		
BIT	NAME	FUNCTION	
7:4	57 ⁶⁶¹⁰	Reserved	
3	SMD INT1 EN	0: SMD interrupt not routed to INT1	
3	SMUD_INTI_EN	1: SMD interrupt routed to INT1	
2	WOM 7 INTI EN	0: Z-axis WOM interrupt not routed to INT1	X
2	WOM_Z_INT1_EN	1: Z-axis WOM interrupt routed to INT1	
1	WOM Y INT1 EN	0: Y-axis WOM interrupt not routed to INT1	C
-	WOW_1_INTI_EN	1: Y-axis WOM interrupt routed to INT1	100
0	WOM_X_INT1_EN	0: X-axis WOM interrupt not routed to INT1	.0
		1: X-axis WOM interrupt routed to INT1	0

Modify the INT_SOURCE0 register to disable unnecessary interrupt sources.

\$ echo 118 > debug_reg_write_addr; echo 0 > debug_reg_write

\$ echo 101 > debug_reg_write_addr; echo 0 > debug_reg_write

Use the following method to force the system into Stop mode. For details, see the "System Sleep" section.

\$ echo enabled > /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup
\$ echo enabled > /sys/devices/platform/soc/40010000.serial/power/wakeup
\$ echo mem > /sys/power/state
[145.630453] PM: suspend entry (deep)
[145.632931] Filesystems sync: 0.000 seconds
[145.638156] Freezing user space processes ... (elapsed 0.001 seconds) done.
[145.645593] OOM killer disabled.
[145.648595] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
[145.656064] printk: Suspending console(s) (use no_console_suspend to debug)

After the system enters sleep mode, as long as the vibration device reaches the detection threshold, it will wake up and exit sleep mode to return to the system command line.

Modify the sensitivity of vibration wake-up. The smaller the threshold, the more sensitive it is. You can modify the thresholds of the three axes (4Ah, 4Bh, 4Ch registers) X, Y, and Z separately.

17.11 ACCEL_WOM_X_THR

Name	ACCEL_WOM_X_THR	
Addre	ess: 74 (4Ah)	0
Serial	IF: R/W	No. of the second se
Reset	value: 0x00	60
Clock	Domain: SCLK_UI	Cr.
BIT	NAME	FUNCTION
7:0	WOM_X_TH	Threshold value for the Wake on Motion Interrupt for X-axis accelerometer WoM thresholds are expressed in fixed "mg" independent of the selected Range [0g : 1g]; Resolution 1g/256="3.9mg

To modify, first switch to Bank4, and then modify the three-axis registers in sequence.

\$ echo 118 > debug_reg_write_addr;echo 4 > debug_reg_write

\$ echo 74 > debug_reg_write_addr;echo 200 > debug_reg_write

\$ echo 75 > debug_reg_write_addr;echo 200 > debug_reg_write

\$ echo 76 > debug_reg_write_addr;echo 200 > debug_reg_write

Turn off the vibration wake-up feature.

\$ echo 0 > event_motion_detect_enable

[518.980117] inv_CPU: Motion Detect Disabled

Attached: Complete test instructions for turning on vibration wake-up, using a high sensitivity threshold, which can be triggered by just tapping the device.

\$ cd /sys/bus/iio/devices/iio:device2
\$ echo 1 > event_motion_detect_enable
\$ echo 118 > debug_reg_write_addr
\$ echo 0 > debug_reg_write
\$
\$ echo 101 > debug_reg_write_addr

\$ echo 0 > debug_reg_write
\$
\$ echo 118 > debug_reg_write_addr
\$ echo 4 > debug_reg_write
\$
\$ echo 74 > debug_reg_write_addr
\$ echo 1 > debug_reg_write
\$
\$ echo 75 > debug_reg_write_addr
\$ echo 1 > debug_reg_write
\$
\$ echo 76 > debug_reg_write_addr
\$ echo 1 > debug_reg_write
\$ echo 1 >

Turn off vibration to wake up.
\$ cd /sys/bus/iio/devices/iio:device2
\$ echo 0 > event_motion_detect_enable
\$ cd [669.702742] inv_CPU: Motion Detect Disabled

4.6. BLE

Module model: BlueNRG-345AC, connected through I2C bus. STM32MP133 platform reads and writes from I2C bus 0 through/dev/i2c-0 device.

Hardware resource list:

Pin Name	Description	Remarks
PE15	BLE module power control pin	0: Power off
PEID		1: Power on
PG7	DIE modulo rocat control nin	0: Normal operation
PG7	BLE module reset control pin	1: Trigger module reset
PG4	DIE modulo wakas up the CDU pip	0: BLE module message is ready or event occurs
PG4	BLE module wakes up the CPU pin	1: BLE module has no message or event occurs
PH12	CPU wakes up the BLE module pin	0: wake up the BLE module

		1: allow the BLE module to enter sleep mode
12C2	CPU communicates with the BLE module port	Device node: /dev/i2c-0

The reference testing commands are as follows:

PE15 power supply enable output high,

\$ gpioset 4 15=1

PG7 is used to reset BLE, set 1 to reset BLE module, set 0 to make BLE module work normal.

\$ gpioset 6 7=0	
Scan I2C bus 0,	
\$ i2cdetect -y 0	
0123456789abcdef	
00:	
10:	
20:	
30: 3e	
40:	
50:	
60:	
70:	

After scanning the slave device on the I2C bus, the device boot message can be read. The BLE module serves as the I2C slave device with address 0xBE and register address 0x01, and reads 220 bytes each time. The command/protocol description is detailed in the document "BLE100 @ Bluetooth Internal Protocol".

\$ i2ctransfer -y 0 w1@0x3e 0x01 r220

The provided example_ble tool can also be used for command testing, as detailed in the "Example of Codes" section. The BLE module is developed by Queclink itself. The command/protocol description is detailed in the document "BLE100 @ Bluetooth Internal Protocol".

The sleep of the BLE module can be controlled, PH12 output high level allows sleep and low level wakes up the module, \$ gpioset 7 12=1

BLE Module events can be notified to the CPU through the PG4 pin, such as sending the command AT+F=12 to the BLE module, which will wake up the CPU,

\$ example_ble AT+F=12
recv from BLE:
+ACK:F,12,1,0K

When the BLE module has a reply message or reports a message, it will pull down the BLE wake-up CPU pin.Level change events will be monitored on the PG4 pin.We can monitor and view it through the interrupt number of PG4 or /dev/input/event0.

Check the interrupt count of PG4. \$ cat /proc/interrupts | grep PG4 74: 6 stm32gpio 4 Edge Wakeup-PG4

Monitor PG4 input events, \$ example_input_intr type:1, code:259, value:0 type:1, code:259, value:1

When a Bluetooth module request command occurs, check the above events and counts. \$example ble AT+F=1

The BLE module can serve as a wake-up source for system sleep, as detailed in the "System Sleep" section.

4.7. RS232/RS485

There are 2 RS232 and 1 RS485.

4-pin	Hardware	Device	Description
RS485	USART5	/dev/ttySTM5	/
RS232_1	USART1	/dev/ttySTM1	/
RS232_2	USART2	/dev/ttySTM2	/

The RS485 port's transceiver switching is automatically controlled by hardware, and no software management is required. When using the RS385 function and DV5_X, you need to turn on the 5V boost enable, and the control pin is GPIO PA4. \$ gpioset 0 4=1

The front view of the 4-pin RS485 connector is as follows:

Pin	Pin Name	Cable Color	Description	Device Nodes	Remarks
1	GND	Black	External Accessory Ground	/	/
2	DC5V_3	Red	External Accessory Power 250mA Max	gpiochip6 8(PG8)	0: Disable output 1: Enable output
3	485B	Orange white	RS485B	/	/
4	485A	Orange black	RS485A	/	/

The front view of the 4-pin RS232-1 connectors is as follows:

Pin	Pin Name	Cable Color	Description	Device Nodes	Remarks
1	GND	Black	External Accessory Ground	/	/
2	DC5V_1	Red	External Accessory Power 250mA Max	gpiochip4 12(PE12)	0: Disable output 1: Enable output
3	TX232_1	Gray black	UART TXD1 RS232	/	/
4	RX232_1	Gray white	UART RXD1 RS232	/	/

The front view of the 4-pin RS232-2 connectors is as follows:

Pin	Pin Name	Cable Color	Description	Device Nodes	Remarks
1	GND	Black	External Accessory Ground	/	/
					0: Disable
2	DC5V 2	Red	External Accessory Power 250mA Max	gpiochip4 13(PE13)	output
			·····		1: Enable
					output
3	TX232_2	Gray black	UART TXD2 RS232	/	/
4	RX232_2	Gray white	UART RXD2 RS232	/	/

The test method is as follows, taking RS232_1 as an example,

Set the baud rate,

\$ stty -F /dev/ttySTM1 ispeed 115200 ospeed 115200 cs8 -icrnl -isig -icanon -echo -echoe
Send data,
\$ echo "12345" > /dev/ttySTM1
Receive data,
\$ cat /dev/ttySTM1

4.8. GPIO&ADC&1-WIRE

There are 5 DIN ports and 5 OUT ports ,4 AIN ports 1 and 1-wire bus .DIN is the abbreviation of Negative trigger input.OUT is the abbreviation of Open drain output. AIN is the abbreviation of Analog Input.

The front view of the 16-pin connector is as follows:

Descriptions of IOs and ADCs are as follows:

Pin	Pin Name	Cable Color	Description	Device Nodes	Remarks
1	AIN1	Brown/white	Analog Input1 0~32V	/sys/bus/iio/devices/iio:d evice1/in_voltage_scale /sys/bus/iio/devices/iio:d evice1/in_voltage10_raw	Volt=scale*raw*(18+20 0)/18 Unit: mV
2	DIN2	Orange/black	Negative trigger input2	gpiochip0 3	\$ gpioget gpiochip0 3
3	AIN2	Red/brown	Analog Input2 0~32V	/sys/bus/iio/devices/iio:d evice1/in_voltage_scale /sys/bus/iio/devices/iio:d evice1/in_voltage4_raw	Volt=scale*raw*(18+20 0)/18 Unit: mV
4	DIN3	Blue	Negative trigger input3	gpiochip2 10	\$ gpioget gpiochip2 10
5	AIN3	White/black	Analog Input3 0~32V	/sys/bus/iio/devices/iio:d evice0/in_voltage_scale /sys/bus/iio/devices/iio:d evice0/in_voltage2_raw	Volt=scale*raw*(18+20 0)/18 Unit: mV
6	DIN4	Black/brown	Negative trigger input4	gpiochip2 11	\$ gpioget gpiochip2 11
7	AIN4	Gray/black	Analog Input4 0~32V	/sys/bus/iio/devices/iio:d evice1/in_voltage_scale /sys/bus/iio/devices/iio:d evice1/in_voltage0_raw	Volt=scale*raw*(18+20 0)/18 Unit: mV
8	DIN5	Pink	Negative trigger input5	gpiochip2 12	\$ gpioget gpiochip2 12
9	OUT3	Brown	Open drain output3	gpiochip8 0	\$ gpioset gpiochip8 0=value
10	OUT5	Orange	Open drain output5	gpiochip0 6	\$ gpioset gpiochip0 6=value
11	OUT2	Yellow	Open drain output2	gpiochip6 15	\$ gpioset gpiochip6 15=value
12	OUT4	White	Open drain output4	gpiochip3 7	\$ gpioset gpiochip3 7=value
13	1W_DATA	Green	1-WIRE data	gpiochip7 2	/

14	GND	Black	Ground	/	/
15	VDD_1WIRE	Red white	Power for 1-wire devices 3.3V	gpiochip1 8	/
16	AGND	Black gray	Analog Ground	/	/

The front view of the 10-pin connector is as follows:

9	7	5	3	1
10	8	6	4	2

Descriptions of IOs and ADCs are as follows:

Pin	Pin Name	Cable Color	Description	Device Nodes	Remarks
1	DCIN	Red	DC Power 8-32V	/	/
2	GND	Black	Ground	/	/
3	IGN	White	Positive trigger input	gpiochip8 3	\$ gpioget gpiochip8 3
4	DIN1	Orange	Negative trigger input1	gpiochip2 8	\$ gpioget gpiochip2 8
5	K-LINE	Pink	ISO K Line	/	/
6	OUT1	Yellow	Open drain output1 with latch	gpiochip2 9 gpiochip1 1	<pre>\$ gpioset gpiochip2 9=value \$ gpioset gpiochip1 1=0;sleep 0.02; gpioset gpiochip1 1=1;sleep 0.02; gpioset gpiochip1 1=0</pre>
7	CAN1L	Brown black	CAN Bus CAN1L	/	/
8	CAN1H	Brown white	CAN Bus CAN1H	/	/

9	CAN2L	Blue	CAN Bus CAN2L	/	/
10	CAN2H	Brown	CAN Bus CAN2H	/	/

The STM32MP133 platform can use the gpio tools tool to print GPIO group information.

\$ gpiodetect
gpiochip0 [GPIOA] (16 lines)
gpiochip1 [GPIOB] (16 lines)
gpiochip2 [GPIOC] (16 lines)
gpiochip3 [GPIOD] (16 lines)
gpiochip4 [GPIOE] (16 lines)
gpiochip5 [GPIOF] (16 lines)
gpiochip6 [GPIOG] (16 lines)
gpiochip7 [GPIOH] (15 lines)
gpiochip8 [GPIOI] (8 lines)

Check the occupancy of the system GPIO port.

\$ gpioinfo					
gpiochip0 - 16	lines:				
line	0:	"PA0"	kernel	input	active-high [used]
line	1:	"PA1"	unused	input	active-high
line	2:	"PA2"	kernel	input	active-high [used]
line	3:	"PA3"	unused	input	active-high
line	4:	"PA4"	unused	input	active-high
line	5:	"PA5"	kernel	input	active-high [used]
()					

Monitor GPIO level changes. This command will change the GPIO port mode to input mode.

```
$ gpiomon gpiochipX line_numbe
Or
$ gpiomon X N
```

Set the GPIO level. Setting the GPIO port level will change the GPIO port mode to output mode. You can set the BIAS of the GPIO port through the -B option. Set the drive mode of the GPIO port through the -D option.

\$ gpioset	gp	iochipX	line_numbe=value
Or			
Ś gpioset	Х	N=valu	e

\$ gpioset --help

Usage: gpioset [OPTIONS] <chip name/number> <offset1>=<value1> <offset2>=<value2> ...

Set GPIO line values of a GPIO chip and maintain the state until the process exits

Options:

-h, --help: display this message and exit

-I,active-low: set the line active state to low -B,bias=[as-is disable pull-down pull-up] (defaults to 'as-is'): set the line bias
-D,drive=[push-pull open-drain open-source] (defaults to 'push-pull'): set the line drive mode
set the line drive mode
Biases:
as-is: leave bias unchanged
disable: disable bias
pull-up: enable pull-up
pull-down: enable pull-down
Drives:
push-pull: drive the line both high and low
open-drain: drive the line low or go high impedance
open-source: drive the line high or go high impedance
Get the GPIO level. This command will change the GPIO port mode to input mode.
\$ gpioget gpiochipX line_numbe

\$gpioget X N

Or

Get GPIO level, this command will not change GPIO port mode. This command is a tool developed by Queclink itself, and you need to install the Quecklink software suite to use it.

\$ gpiosnoop gpiochipX line_numbe Or \$ gpiosnoop X N

4.9. Watchdog

GV850 adopts an external independent hardware watchdog.

Hardware resource list:

Pin Name	Description	Remarks
P17	Watchdog anabla IQ	output high, enable watchdog
	Watchdog enable IO	output low, disable watchdog
DC14	Food watch dog IO	Flip the level within 1.7s, otherwise a reset will be
PG14	Feed watchdog IO	triggered.

The software watchdog feed is implemented through a qdog driver and a sysfs interface is provided to enable and disable the watchdog,

\$ Ismod | grep qdog

qdog 16384 0 Turn on watchdog and restart the watchdog automatically,

\$ echo 1 > /proc/qlwatchdog_enabled

Turn off watchdog,

\$ echo 0 > /proc/qlwatchdog_enabled

After enabling the watchdog, if you actively stop feeding the watchdog, the system will reset due to the cessation of feeding the watchdog. When testing this feature, you need to remove the universal USB Type-A port of the USB cable, leaving only the USB-to-serial connection. If the universal USB Type-A port is connected to the development computer, the device's watchdog will not reset.

\$ echo 1 > /proc/qlwatchdog_feed_stop

4.10. RTC

STM32MP133 has built-in RTC, device/dev/rtc0, and can be set and obtained through the system's built-in hwclock tool. When the system starts, it will be loaded and set as the local time of the system. Reference command:

Query the current system time,

\$ date	
Wed Jan 5 03:19:16 UTC 2000	
Set the system time to local time	
\$ date -s "2023-09-27 14:26:30"	
Wed Sep 27 14:26:30 UTC 2023	
Set the system time to RTC	
Ś hwclock –w	

Ş TIWCIOCK –W	
Read time from RTC	
\$ hwclock -r	
Wed Sep 27 14:27:12 2023	0.000000 seconds

The RTC can serve as a wake-up source for system sleep, as detailed in the "System Sleep" section.

4.11. Power&Battery

Main power function and interface description are as follows:

Function	Device Nodes	Remarks
Voltage detection	/sys/bus/iio/devices/iio:device1/in_voltage_scale	Volt=scale*raw*(82+1000)/82 + 800
	/sys/bus/iio/devices/iio:device1/in_voltage2_raw	Unit: mV

Backup battery power function and interface description are as follows:

Function	Device Nodes	Remarks
Voltage detection	/sys/bus/iio/devices/iio:device1/in_voltage_scale	Volt=scale*raw*(200+200)/200

	/sys/bus/iio/devices/iio:device1/in_voltage1_raw	Unit: mV
Power supply On		On
Power supply On		\$ gpioset gpiochip5 12=1
		\$ gpioset gpiochip7 10=0;sleep
		0.02;gpioset gpiochip7 10=1;sleep
	gpiochip5 12	0.02;gpioset gpiochip7 10=0
	D flip-flop data pin	
Dower owerly Off		Off
Power supply Off	gpiochip7 10	\$ gpioset gpiochip5 12=0
	D flip-flop clock pin	\$ gpioset gpiochip7 10=0;sleep
		0.02;gpioset gpiochip7 10=1;sleep
		0.02;gpioset gpiochip7 10=0
Charging Start		Start
	gniochin0 11	\$ gpioset gpiochip0 11=1
Charging Stop	gpiochip0 11	Stop
		\$ gpioset gpiochip0 11=0
	gpiochip6 12	\$ gpioget gpiochip6 12
Charging Status		0, Charging
		1, Not Charging
Charging IC On		On
0	_	\$ gpioset gpiochip0 13=1
		Off
		\$ gpioset gpiochip0 13=0
		The power supply of the ammeter IC
		is associated with the power supply
	gpiochip0 13	input of the battery charging
Charging IC Off		management IC. It is necessary to
		enable it first (backup battery on,
		charging ammeter IC on), then enable
		charging (backup battery charging
		starts), and then detect the charging
		current
Charging Current	/sys/bus/iio/devices/iio:device1/in_voltage_scale	Current=scale*raw
	/sys/bus/iio/devices/iio:device1/in_voltage16_raw	Unit: mA
Battery		
Temperature		On
Detection On	gpiochip6 13	\$ gpioset gpiochip6 13=1
Battery		Off
Temperature		\$ gpioset gpiochip6 13=0
Detection Off		
Battery	/sys/bus/iio/devices/iio:device1/in_voltage_scale	Volt=scale*raw
Temperature	/sys/bus/iio/devices/iio:device1/in_voltage15_raw	Unit: mV

4.11.1. Get Main power voltage

Read the main ADC sampling value, \$ cat /sys/bus/iio/devices/iio:device1/in_voltage_scale 0.805664062 \$ cat /sys/bus/iio/devices/iio:device1/in_voltage2_raw 1057

According to the formula,

Volt = 0.805 * 1057 * (82 + 1000)/82 + 800 = 12027.53 mV

Other tests can be carried out according to the "Obtaining the main power voltage" test method.

4.11.2. Get battery voltage

First enable the battery voltage ADC acquisition, \$ gpioset gpiochip6 2=1

Turn on the battery power supply switch. \$ gpioset gpiochip5 12=1 \$ gpioset gpiochip7 10=0;sleep 0.02;gpioset gpiochip7 10=1;sleep 0.02;gpioset gpiochip7 10=0

Read the battery ADC sampling value,

\$ cat /sys/bus/iio/devices/iio:device1/in_voltage_scale
0.805664062
\$ cat /sys/bus/iio/devices/iio:device1/in_voltage1_raw

2373

calculate, Volt = 0.806*2373*(200+200)/200 = 3825.276mV, read out value 3825mV。

4.11.3. Battery Charging

Turn on the battery power supply switch.

```
$ gpioset gpiochip5 12=1
$ gpioset gpiochip7 10=0;sleep 0.02;gpioset gpiochip7 10=1;sleep 0.02;gpioset gpiochip7 10=0
```

Turn on the charging current meter IC power supply, \$ gpioset gpiochip0 13=1

Turn on backup battery charging. \$ gpioset gpiochip0 11=1

At this time, the battery is in charging state, and its charging state, charging current, and battery temperature can be

read.

Check the battery charging status. \$ gpioget -B as-is gpiochip6 12

0

Get the charging current and read the current ADC sampling value. \$ cat /sys/bus/iio/devices/iio:device1/in_voltage_scale 0.805664062 \$ cat /sys/bus/iio/devices/iio:device1/in_voltage16_raw 242

calculate, Current = 0.806 * 242 = 195 mA。

Remove external power and check the charging status.

\$ gpioget -B as-is gpiochip6 12

1

Turn off the backup battery switch, and the system will be completely powered off and shut down.

\$ gpioset gpiochip5 12=0

\$ gpioset gpiochip7 10=0;sleep 0.02;gpioset gpiochip7 10=1;sleep 0.02;gpioset gpiochip7 10=0

4.11.4. Reading battery temperature

Enable battery temperature reading, \$ gpioset gpiochip6 13=1

Read the battery temperature ADC acquisition value, \$ cat /sys/bus/iio/devices/iio:device1/in_voltage_scale 0.805664062 \$ cat /sys/bus/iio/devices/iio:device1/in_voltage15_raw 1963

calculate, Volt = 0.806*1963 = 1582.178mV

Then according to the conversion table below, the temperature is about 25~30°C.

Temperature and voltage relationship conversion table:

Temperature (℃)	Sampling voltage value (V)
-40	3.139534748
-35	3.091365042

-30	3.032462079
-25	2.96174315
-20	2.878204686
-15	2.78153967
-10	2.6715004
-5	2.548154561
0	2.413356082
5	2.269426314
10	2.118305522
15	1.96255978
20	1.805502468
25	1.65
30	1.498198198
35	1.352867595
40	1.215877226
45	1.087758933
50	0.969656098
55	0.861876616
60	0.764269249
65	0.678039091
70	0.601275761
75	0.532704403
80	0.471994173

After the device enters Standby mode, the GPIO state cannot be maintained. The IO latch circuit can maintain the PF12 state to ensure that the battery power supply state can be maintained after entering Standby mode.

When GPIO PH10 rises, PF12 outputs 1/0 and the status will be latched.

```
For example, in the following command, PF12 outputs 1 and is latched.
$ gpioset 5 12=1;gpioset 7 10=0;sleep 0.0001;gpioset 7 10=1;sleep 0.0001;gpioset 7 10=0
```

For example, in the following command, PF12 outputs 1 and is latched.

4.12. Hardware version

The device provides a queryable hardware version. The hardware version is obtained by reading the resistance value of the hardware configuration through ADC.

Pin Name	Description	Remarks
		Device Node:
PA1	Hardware version ADC acquisition pin	/sys/bus/iio/devices/iio:device1/in_voltage3_raw
		/sys/bus/iio/devices/iio:device1/in_voltage_scale

Voltage calculation method:
Volt=scale*raw
Unit: mV
Voltage value range:
[1300,1475] corresponds to R1.03
[1125,1300] corresponds to R1.04
[950,1125] corresponds to R1.05
[775, 950] corresponds to R1.06

Example:

\$ cat /sys/bus/iio/devices/iio:device1/in_voltage_scale
0.805664062
\$ cat /sys/bus/iio/devices/iio:device1/in_voltage3_raw
1500

0.805664062 * 1500 = 1208 is in the range of [1125,1300], indicating that the current hardware version is R1.04.

5. System Sleep

5.1. ST official description

This section introduces the low-power design of the stm32mp133 platform and the control methods for entering low-power. CPU provides multiple energy consumption operation modes,

The wake-up sources supported in each mode are different, as shown in the following table,

Platform mode	Available wakeup sources
Stop	BOR, PVD, AVD, Vbat mon, Temp mon, HSE CSS, LSE CSS, RTC, TAMP, USBH, OTG, ETH, USART, I2C, SPI, DTS, LPTIM, IWDG, GPIO, Wakeup pins (from PWR)
LPLV-Stop LPLV-Stop2	BOR, PVD, AVD, Vbat mon, Temp mon, LSE CSS, RTC, TAMP, USART, I2C, SPI, DTS, LPTIM, IWDG, GPIO, Wakeup pins (from PWR)
Standby	BOR, Vbat mon, Temp mon, LSE CSS, RTC, TAMP, IWDG, Wakeup pins (from PWR)

That is to say, the low-power mode CPU can enter depends on the wake-up source required by the application scenario,

Wake-up source	Linux command	STM32MP13x device system deepest power mode	System DDR	Linux kernel state	Power consuming	Wake- up time	Comment/Application guideline
Group 1: USB, CEC, ETH	"mem"	Stop or LP- Stop	SR (VTT off)	"Suspend-to-ram"	Medium	Medium	LP-Stop: driving external PWR_LP/ PWR_ON permits designing the custom strategy for the external regulator. Typical application is to switch off DDR3 termination supply (VTT) (most likely not needed in 16- bit DDR design)
Group 2: PVD, AVD, DTS, USART, I ² C, SPI, LPTIM, GPIOs	"mem"	LPLV-Stop or LPLV-Stop2	SR (VTT off)	"Suspend-to-ram"	Low	Medium	LPLV-Stop(2): save power thanks to the power retention. Suitable for applications with aggressive power constraints and tolerant with limitations of wake- up source (refer to Table 4. Low-power mode wake-up capabilities of the system)
Group 3: BOR, Vbat mon,	"mem"	Standby	SR	"Suspend-to-ram"	Low	Medium	Standby saves more power at the expense of wake-up time
Temp mon, LSE CSS, RTC, TAMP, wake-up pins	"shutdown"	Off/VBAT	Off	Shutdown	Very low	High	-

Table 9. Deepest power mode per wake-up source group and equivalence between Linux and STM32MP13x device system power modes

According to the GV850 specifications and application scenarios, it is required to realize modes LPLV-STOP/LPLV-STOP2 and Off/VBAT. OpenSTLinux implements a power management mechanism, as shown in the following figure,

Only by using the provided Linux sysfs interface, the configuration and enabling/disabling of wake-up sources and initiating of state/mode switchover request can be done. By calling the PWR driver to control the hardware PWR, adjust the VDDCORE and VDDCPU voltages according to the following table. After both voltages meet the conditions, the CPU as a whole can enter the corresponding energy consumption state.

Due to differences in power management hardware between GV850 and the official demo board, GV850 uses separate components instead of power management IC (PMIC), and GPIO is used for PWR control instead of I2C interface. Therefore, GPIO needs to be adapted and adopted in the PWR driver.

Supply name	Control register (LP mode) /@	LP-Stop	LPLV-Stop	LPLV-Stop2	Standby with DDR SR	Standby w/o DDR SR	
VDDCORE	BUCK4/0x33	0x69 (1.25 V)	0x33 (0.9 V)	0x33 (0.9 V)	0x30	(off)	
VDDCPU	BUCK1/0x30	0x69 (1.25 V)	0x33 (0.9 V)) 0x30 (off)			
V _{DD_DDR}	BUCK2/0x31	0x79 (1.35 V) 0x7A (0x7A (off)	
V _{DD}	BUCK3/0x32		0xD9 (3.3 V)				
VREF_DDR	VREFDDR/0x34		0x1 0x0 (off				
V _{DDA}	LDO1/0x35		0x51 (2.9 V)			(off)	
V _{DD_USB}	LDO4/0x38	0x1 (3.3 V)			0x0	(off)	
V _{DD_SD}	LDO5/0x39	0x51 (2.9 V)			0x50	(off)	

Table 8 STPMIC1x (I P mode)	programming: I P-Stop	LPLV-Stop and Standby mode
Table 0. STEWICTA (LF HOUE)	programming. LF-Stop	LFLV-Stop and Standby mode

5.2. Device wakeup source

The mode that the device enters when it goes into sleep mode depends on the instruction to enter sleep mode and the currently enabled wakeup source.

Based on common usage scenarios, GV850 supports multiple wakeup sources in three low-power modes, as listed below:

Name	GPIO name	Туре	Supported sleep modes	Support interrupt detection	Remark
RTC	-	Inside the CPU	Stop,Standby	-	The default value is enabled.
UART	-	interface	Stop	-	The default setting is disabled. You need to enable it first. See below for the method.
LTE	GPIO PB7	External modules	Stop V1.04 hardware version supported.	Yes Supported by V1.04 hardware version.	LTE module RI event.
USB	GPIO PI2	interface	Stop,Standby	-	USB plug/unplug detection, Edge trigger.
CAN	GPIO PG1	External modules	Stop	Yes	Connect CAN OBD OUT2 PIN.
BLE	GPIO PG4	External modules	Stop	Yes	Bluetooth module events.
IMU	GPIO PC13	External modules	Stop,Standby	Yes	SPI INT1 interrupt.
IGN	GPIO PI3	interface	Stop,Standby	Yes	IGN signal input, Edge trigger wakeup.
POWER	GPIO PI1	interface	Stop,Standby	No	External power connection/disconnection detection, Edge trigger wake-up.
IO Input	GPIO PA3	interface	Stop,Standby	Yes Supported by V1.04 hardware version.	DIN2 of 16PIN interface. Interrupt uses GPIO PD9.
Button	GPIO PH6	interface	Stop	Yes	button.

The current consumption results of the GV850 device in LPLV-Stop2 or Standby mode are shown in the following

مغمنا مرجاه والمرجر والعارين والواجين		
Table With no other inte	ertaces or nerinnerais	enanied by defailit.
table, with no other inte		

Memory type	Memory model	Power consumption: High -> Low		
		Wake up quickly,	Wake up quickly, the	Slow wake-up,
		the system	system continues to run	system restart
		continues to run		
		LPLV-Stop2	Standby with DDR SR	Standby w/o DDR SR
DDR3L	IMD128M16R322J8LY	12V-2.1mA	12V-1.4mA	12V-620uA
		3.8V-5.6mA	3.8V-3.6mA	3.8V-800uA

The internal battery (3.8V) leakage current is 4uA when the device is turned off.

The STM32MP133 platform function and mode dependency table is as follows: **Table 35. Functionalities depending on system operating mode**⁽¹⁾ (continued)</sup>

		Stop and	d LP-Stop		-Stop2	Sta	ndby	
Peripheral	Run		Wakeup capability		Wakeup capability	-	Wakeup capability	VBAT
SPIx (x=1:5)	0	O ⁽⁸⁾	O ⁽⁸⁾	R	O ⁽⁸⁾	-		-
GPIOs	0	R	0 ⁽¹¹⁾	R	O ⁽¹¹⁾		6 pins (12)	

Legend: Y = Yes (Enable). O = Optional (Disable by default. Can be enabled by software). R = data/state retained. - = Not available; highlighted in gray for wakeup mode.

As can be seen from the above table,

LPLV-Stop2 mode features:

GPIO and SPI data/status will be maintained during sleep. This means that the GPIO status remains unchanged after entering sleep mode, and the G-sensor of the SPI bus continues to work after waking up; All GPIOs can be used as interrupt wakeup sources;

Standby mode features:

GPIO and SPI data/status cannot be maintained during sleep. This means that after entering sleep, the GPIO status will be restored to the default status.

Only 6 special GPIOs (PA3, PC13, PI1, PI2, PI3, PF8) can be used as interrupt wakeup sources;

Under the current default wakeup source of the device, using mem and poweroff will enter the Standby mode. The DDR SR control effect is as follows:

command	DDR Power Supply	Awakening state	feature
mem	1: Keep the power on	The system wakes up and	Fast startup, high power consumption

		runs directly.	
	0: Do not keep power	The system wakes up but	Abnormal use
	on	does not function properly	
poweroff	1: Keep the power on	System wake-up and reboot	Slow startup, system is normal, power
			consumption is not the lowest
	0: Do not keep power	System wake-up and reboot	Slow startup, normal system, lowest
	on		power consumption

The normal command combination is the mem command with DDR power supply, and the poweroff command with DDR power off.

As can be seen from the above, Standby has two modes: Standby with DDR SR and Standby w/o DDR SR. The difference between the two is whether the memory DDR keeps powered on and self-refreshed after entering the Standby mode, which will determine the current consumption and the wake-up speed.

GV850 achieves compatibility between Standby and two modes through DDR latch control circuit.

When PE5 rises, PG0 outputs 1, and the power supply to DDR is controlled through NRST. \$ gpioset 6 0=1;gpioset 4 5=0;sleep 0.0001;gpioset 4 5=1;sleep 0.0001;gpioset 4 5=0

After entering Sandby, DDR will maintain power supply and self-refresh, and the system will resume operation after waking up.

\$ echo mem > /sys/power/state

- [875.043491] PM: suspend entry (deep)
- [875.055564] Filesystems sync: 0.009 seconds
- 875.066293] Freezing user space processes ... (elapsed 0.001 seconds) done.
- 875.073619] OOM killer disabled.

875.076780] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.

[875.084108] printk: Suspending console(s) (use no_console_suspend to debug)

When PE5 rises, PG0 outputs 0 and the power supply to DDR is controlled by PWR_NRST. \$ gpioset 6 0=0;gpioset 4 5=0;sleep 0.0001;gpioset 4 5=1;sleep 0.0001;gpioset 4 5=0

After entering Standby, DDR will stop supplying power and can enter a lower power consumption state. However, the system will be reset after waking up.

\$ poweroff
Stopping factorytest: start-stop-daemon: warning: killing process 189: No such process
killall: factorytest: no process killed
Failed
Stopping batterymgr: OK
Stopping gpsd: OK
Stopping dropbear sshd: OK
Stopping network: OK

Stopping bluetoothd: OK Stopping tee-supplicant: FAIL Stopping system message bus: done Saving random seed: OK stop Stopping klogd: OK Stopping syslogd: OK umount: tmpfs busy - remounted read-only umount: devtmpfs busy - remounted read-only [935.611223] UBIFS (ubi0:3): background thread "ubifs_bgt0_3" stops The system is going down[935.621113] watchdog: watchdog0: nowayout prevents watchdog being stopped! NOW! Sent SIGTE[935.629251] watchdog: watchdog0: watchdog did not stop! RM to all processes Sent SIGKILL to all proce[937.658604] reboot

Check the default wakeup sources enabled by the system, which are wakeup0, wakeup1 and wakeup2.

\$ ls -la /sys/	\$ Is -la /sys/class/wakeup/		
lrwxrwxrwx	wakeup0 ->//devices/platform/soc/5c004000.rtc/wakeup/wakeup0		
Lrwxrwxrwx	wakeup1 ->//devices/platform/soc/5c004000.rtc/rtc/rtc0/alarmtimer.0.auto/wakeup/wakeup1		
lrwxrwxrwx	wakeup2 ->//devices/platform/wakeup/wakeup/wakeup2		

You can further view the name of each wake-up source. \$ cat /sys/class/wakeup/wakeup0/name 5c004000.rtc

\$ cat /sys/class/wakeup/wakeup1/name alarmtimer.0.auto

\$ cat /sys/class/wakeup/wakeup2/name
wakeup

After enabling other wakeup sources, such as UART, you can see the newly added wakeup sources wakeup4 and wakeup5.

\$ ls -la /sys	\$ Is -la /sys/class/wakeup/		
lrwxrwxrwx	wakeup0 ->//devices/platform/soc/5c004000.rtc/wakeup/wakeup0		
lrwxrwxrwx	wakeup1 ->//devices/platform/soc/5c004000.rtc/rtc/rtc0/alarmtimer.0.auto/wakeup/wakeup1		
lrwxrwxrwx	wakeup2 ->//devices/platform/wakeup/wakeup/wakeup2		
lrwxrwxrwx	wakeup4 ->//devices/platform/soc/40010000.serial/tty/ttySTM0/wakeup4		
lrwxrwxrwx	wakeup5 ->//devices/platform/soc/40010000.serial/wakeup/wakeup5		

5.3. RTC Wake-up

It is enabled by default. By using the rtcwake tool, scheduled wake-up can be completed. The usage method is as follows: Check the current system time,

\$ date

Wed Sep 27 14:36:57 UTC 2023

Initiate sleep and wake up at 14:39,

\$ rtcwake -t `date -d 14:39 +%s` -m mem -d /dev/rtc0

wakeup from "mem" at Wed Sep 27 14:38:58 2023

- [825.648590] PM: suspend entry (deep)
- [825.651151] Filesystems sync: 0.000 seconds
- [825.662977] Freezing user space processes ... (elapsed 0.001 seconds) done.
- 825.670398] OOM killer disabled.
- 825.673390] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
- 825.680988] printk: Suspending console(s) (use no_console_suspend to debug)

Or directly specify the sleep interval,

\$ rtcwake -s 60 -m mem -d /dev/rtc0

wakeup from "mem" at Sat Jan 1 22:54:38 2000

- [27.544938] PM: suspend entry (deep)
- [27.547565] Filesystems sync: 0.000 seconds
- [27.559313] Freezing user space processes ... (elapsed 0.001 seconds) done.
- [27.566787] OOM killer disabled.
- [27.569771] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
- 27.577385] printk: Suspending console(s) (use no_console_suspend to debug)

Will wake up after 60 seconds of sleep by itself and return to the system command prompt.

- [27.584948] inv-CPU-iio-spi spi0.0: icm42600 suspend
- [27.588715] dwc2 49000000.usb-otg: suspending usb gadget g_ether
- [27.593181] Disabling non-boot CPUs ...
- [27.597019] dwc2 49000000.usb-otg: resuming usb gadget g_ether
- [27.602441] nand: SDR timing mode 4 not acknowledged by the NAND chip
- [27.604035] inv-CPU-iio-spi spi0.0: icm42600 resume
- [27.635996] OOM killer enabled.
- [27.639113] Restarting tasks ... done.
- [27.657140] PM: suspend exit

root@Queclink-GV850:~#

Enter Standby w/o DDR SR mode and test RTC wakeup as follows:

Use the rtcwake tool with the parameter –m on to start a 20 second timer. Do not exit the program, otherwise the timer will be turned off, so run it in the background.

\$ rtcwake -s 20 -m on -d /dev/rtc0 &

Use the power off command to initiate low power consumption.

\$ gpioset 6 0=0;gpioset 4 5=0;sleep 0.0001;gpioset 4 5=1;sleep 0.0001;gpioset 4 5=0 \$ poweroff Stopping factorytest: start-stop-daemon: warning: killing process 189: No such process killall: factorytest: no process killed Failed Stopping batterymgr: killall: batterymgr: no process killed Failed stop Stopping gpsd: OK Stopping dropbear sshd: OK Stopping network: OK Stopping bluetoothd: OK Stopping tee-supplicant: FAIL Stopping system message bus: done Saving random seed: OK stop Stopping klogd: OK Stopping syslogd: OK umount: tmpfs busy - remounted read-only umount: devtmpfs busy - remounted read-only 576.839871] UBIFS (ubi0:3): background thread "ubifs_bgt0_3" stops The system is going down[576.849778] watchdog: watchdog0: nowayout prevents watchdog being stopped! NOW! Sent SIGTER[576.857991] watchdog: watchdog0: watchdog did not stop! M to all processes Sent SIGKILL to all proce [578.886453] reboot After the timeout wake-up, the system restarts and prints the boot log. NOTICE: CPU: STM32MP133A Rev.Y NOTICE: Model: STMicroelectronics custom STM32CubeMX board openstlinux-5.15-yocto-kirkstone-mp1-v22.11.23 NOTICE: BL2: v2.6-stm32mp1-r2.0(release):() NOTICE: BL2: Built : 03:57:39, Mar 8 2024 NOTICE: BL2: Booting BL32

• • •

5.4. UART Wake-up

It is disabled by default. Taking the system console UART device ttySTM0 as an example to show the enabling method, Check the default value,

\$ cat /sys/devices/platform/soc/40010000.serial/power/wakeup disabled

\$ cat /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup

disabled

L

Modify the wake-up source to enable state,

\$ echo enabled > /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup

\$ echo enabled > /sys/devices/platform/soc/40010000.serial/power/wakeup

Initiate a sleep request,

\$ echo mem > /sys/power/state

[192.680917] PM: suspend entry (deep)

192.695818] Filesystems sync: 0.012 seconds

192.699298] Freezing user space processes ... (elapsed 0.001 seconds) done.

192.706747] OOM killer disabled.

[192.709813] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.

192.717339] printk: Suspending console(s) (use no_console_suspend to debug)

During sleep, if there are no other wake-up sources, it will wake up when UART receives data and return to the system command line login.

[192.725008] inv-CPU-iio-spi spi0.0: icm42600 suspend

[192.728334] dwc2 49000000.usb-otg: suspending usb gadget g_ether

[192.732793] Disabling non-boot CPUs ...

[192.736417] dwc2 49000000.usb-otg: resuming usb gadget g_ether

[192.741961] nand: SDR timing mode 4 not acknowledged by the NAND chip

[192.743202] inv-CPU-iio-spi spi0.0: icm42600 resume

[192.775183] OOM killer enabled.

[192.778435] Restarting tasks ... done.

[192.783454] PM: suspend exit

^Z

Welcome to Buildroot Queclink-GV850 login:

After the test is completed, restore the wakeup source to the disabled state. The device cannot enter a higher sleep level when the UART wakeup source is enabled.

\$ echo disabled > /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup
\$ echo disabled > /sys/devices/platform/soc/40010000.serial/power/wakeup

6.3 USB Wake-up

Supports Stop and Standby modes. When in low power mode, it will wake up when a USB Type-A port is plugged in and 5V voltage is detected on VBUS.

In Standby with DDR SR mode, the test process is as follows: Unplug the general USB Type-A port of the cable and keep the USB to serial port connection.

\$ gpioset 6 0=1;gpioset 4 5=0;sleep 0.0001;gpioset 4 5=1;sleep 0.0001;gpioset 4 5=0

\$ echo mem > /sys/power/state

At this time, the system enters sleep mode. After plugging the general USB Type-A port into the R&D coCPUter, the device is awakened.

6.4 G-Sensor Wake-up

Support Stop and Standby modes. G-sensor devices support multiple detection modes, taking vibration wake-up WOM (Wake On Motion) as an example.

Enable WOM. For detailed meaning of the command, see the "Interface" -> "IMU" section.

\$ cd /sys/bus/iio/devices/iio:device2;echo 1 > event_motion_detect_enable;echo 118 > debug_reg_write_addr; echo
0 > debug_reg_write;echo 101 > debug_reg_write_addr; echo 0 > debug_reg_write;echo 118 >
debug_reg_write_addr;echo 4 > debug_reg_write;echo 74 > debug_reg_write_addr;echo 20 > debug_reg_write;echo
75 > debug_reg_write_addr;echo 20 > debug_reg_write;echo 76 > debug_reg_write_addr;echo 20 >
debug_reg_write;cd -

[731.502424] inv_CPU: Motion Detect Enabled

Entering Standby w/o DDR SR sleep \$ poweroff

Then pick up the device and shake it to wake it up. After the test is completed, you can turn off the WOM function of the G-sensor.

\$ cd /sys/bus/iio/devices/iio:device2;echo 0 > event_motion_detect_enable;cd -

[900.148720] inv_CPU: Motion Detect Disabled

6.5 IGN Wake-up

Support Stop and Standby modes. When entering low power mode, the IGN signal connected to 12V high level will wake up the device. If you want to enter Stop mode, you need to enable some corresponding wake-up sources. The chip decides to enter the corresponding sleep mode according to the level of the wake-up source.

Enable serial terminal wake-up, \$ echo enabled > /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup \$ echo enabled > /sys/devices/platform/soc/40010000.serial/power/wakeup

Entering the Stop mode of sleep, \$ echo mem > /sys/power/state

Manually short the 10-pin connector IGN line to the 12V power supply. The system will be awakened and the operating system will be restored to the state before hibernation.

NRST controls the power supply to DDR and can maintain memory power supply when power is off. \$ gpioset 6 0=1;gpioset 4 5=0;sleep 0.0001;gpioset 4 5=1;sleep 0.0001;gpioset 4 5=0

Enter Standby w/o DDR SR sleep mode,

\$ echo mem > /sys/power/state

Manually short the 10-pin connector IGN line to the 12V power supply. The system will wake up and the device system will restart.

6.6 POWER Wake-up

Supports Stop and Standby modes. Use the internal battery as the power source and turn off the external power source. After entering low-power mode, connecting an external power source will wake up the device. When testing this item, you need to unplug the USB Type-A port connecting the device to the development coCPUter and keep the USB to serial port connection. Enter commands through the serial port.

For the Stop sleep mode test command, refer to IGN wake-up.

First, connect the battery to the device. Turn on the battery power enable. Then enter the Standby with DDR SR sleep mode. The test process is as follows.

Open the battery,

\$ gpioset 5 12=1;gpioset 7 10=0;sleep 0.02;gpioset 7 10=1;sleep 0.02;gpioset 7 10=0

NRST controls the power supply to DDR and can maintain memory power supply when power is off \$ gpioset 6 0=1;gpioset 4 5=0;sleep 0.0001;gpioset 4 5=1;sleep 0.0001;gpioset 4 5=0

Enter Standby with DDR SR sleep mode,

\$ echo mem > /sys/power/state

Manually short the external power supply positive terminal (10-pin connector DCIN line) with the 12V power supply. The system will be awakened and the operating system will be restored to the state before hibernation.

6.7 IO Input Wake-up

Supports Stop and Standby modes. The wake-up pin is GPIO PA3. The corresponding terminal is DIN2. For test commands, refer to IGN wake-up. Manually short-circuit the DIN2 terminal line (16-pin connector DIN2 line) with the ground line. At this time, the system will be awakened and the operating system will be restored to the state before hibernation.

6.8 Button Wake-up

Support Stop mode. When in low power mode, press the button to wake up.

Enable serial port wakeup, which allows the mem command to put the system into stop mode. The test process is as follows.

Enable the serial port wakeup source, so that the mem command enters the Stop sleep mode.

\$ echo enabled > /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup \$ echo enabled > /sys/devices/platform/soc/40010000.serial/power/wakeup

Go to sleep,

\$ echo mem > /sys/power/state

After entering sleep mode, you can wake up the system by manually pressing a button.

6.9 CAN OBD module Wake-up

Supports Stop mode. When entering low power mode, sending J1939 data packets in the CAN BUS1 bus of the CAN module can wake up the CAN module, and the CAN module wakes up the CPU.

The test method is as follows,

First put the CAN OBD module into sleep mode, and then put the CPU system into Stop mode using the following command:

\$ echo enabled > /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup

\$ echo enabled > /sys/devices/platform/soc/40010000.serial/power/wakeup

\$ echo mem > /sys/power/state

[1837.571084] PM: suspend entry (deep)

[1837.583261] Filesystems sync: 0.009 seconds

[1837.586752] Freezing user space processes ... (elapsed 0.001 seconds) done.

[1837.594050] OOM killer disabled.

[1837.597421] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.

[1837.604814] printk: Suspending console(s) (use no_console_suspend to debug)

When a J1939 data packet is sent in the CAN BUS1 bus of the CAN module and the CAM module wakes up, the GPIO PG1 input level change will wake up the CPU system from Stop mode.

[180.861061] inv-CPU-iio-spi spi0.0: icm42600 suspend

- [180.865177] dwc2 49000000.usb-otg: suspending usb gadget g_ether
- [180.869810] Disabling non-boot CPUs ...
- [180.873631] dwc2 49000000.usb-otg: resuming usb gadget g_ether
- [180.879675] nand: SDR timing mode 4 not acknowledged by the NAND chip
- [180.881261] inv-CPU-iio-spi spi0.0: icm42600 resume
- [180.913179] OOM killer enabled.
- [180.916295] Restarting tasks ... done.
- [180.936626] PM: suspend exit

6. Example of Codes

In order to facilitate developers to familiarize themselves with and use the modules on the device, example source code for some module interfaces is provided for reference.

6.1. utils_info

Query and print product information, such as SN, MCUID and hardware version information.

\$ utils_info SN:*** MCUID:313538323532511100270024 HW:HWR103

6.2. example_modem_at

It demonstrates how to send commands to the LTE module and receive response data. For more information on the module, please refer to the "LTE" section.

The method is as follows, with the main steps being to set baud rate, enable power supply, power on the module, turn off command echo and test command:

\$ stty -F /dev/ttySTM3 ispeed 115200 ospeed 115200 cs8 -icrnl -isig -icanon -echo -echoe

\$ gpioset 0 15=1
\$ gpioset 5 5=1
\$ sleep 3
\$ gpioset 5 5=0
Use the tool to send the ATE0 command to turn off echo,
\$ example_modem_at ATE0

ATE0

ОК

Send the AT+GMR command to query the firmware version of the LTE module, \$ example_modem_at AT+GMR EG915UEUABR02A05M08

ОК

6.3. example_formula_can

It demonstrates how to send commands to the CAN module and receive response data. For more information on the module, please refer to the "CAN" section.

Since the CANOBD software module is newly developed, it is recommended to use the CANOBD UBUS interface for testing first. Refer to the "Canobd" section in the "Queclink Software Module" chapter.

The method is as follows, with the main steps being to set baud rate, enable power supply and test command:

\$ stty -F /dev/ttySTM7 ispeed 115200 ospeed 115200 cs8 raw \$ gpioset 6 3=1

\$ gpioset 0 4=1

Embedded commands inside the tool, parameters (OR values) can be used to control the sequence of the commands to be executed,

\$ example_external_can

Usage:

example_external_can <testing mask>

Testing mask:

```
-Raw frame send, [addr cmd D1 .. Dn] no need prefix, suffix and SK, --0x00
    -Read SN,
                 --0x01
    -Read version.
                     --0x02
    -Read boot version, --0x04
    -Read INPUT_3 voltage, --0x08
    -Read V_IN voltage, --0x10
    -Enter develop mode, --0x20
    -CAN loop test, --0x40
    -K-Line test, --0x80
    -GPIO output functions settings,
                                      --0x100
    -IO test O1,O2,O3 activated,
                                  --0x200
    -IO test O2 activated, --0x400
    -IO test LED green on,
                             --0x800
    -IO test LED red on. --0x1000
    -IO test all disactivated,
                             --0x2000
    -Read THR support flag,
                              --0x4000
    -Wakeup CAN module ,
                             --0x8000
Execute Read version command,
```

\$ example_external_can 0x02
STEP
Read version, write len=6:
F5 B3 10 01 3B F6
read len=10:
F5 B4 14 01 49 30 11 00 AC F6

FW Revision:3.017 Execute Read version and CAN loop test commands, \$ example_external_can 0x42 STEP Read version, write len=6: F5 B3 10 01 3B F6

read len=10: F5 B4 14 01 49 30 11 00 AC F6 FW Revision:3.017

STEP CAN loop test, write len=9: F5 B3 43 02 00 80 10 77 F6 read len=8: F5 B4 22 3A CC F2 31 F6

Loop to read the serial port data of the CAN module, \$example_external_can 0x0 Listen can communication interface... select timeout 10.0 sec

Send the original data frame of CAN module, \$ example_external_can 0x0 0x3b 0x10 0x01 STEP Raw frame send, [addr cmd D1 .. Dn] no need prefix, suffix and SK, write len=6: F5 3B 10 01 B3 F6 read len=8: B4 14 01 49 30 11 00 AC

6.4. example_gsensor

Demonstrates how to provide a sysfs interface through the driver to complete the initialization, data collection, and command testing of the IMU device:

```
$ example_gsensor
Usage:
    test-sensors-sysfs [-d <device_no>] [-a <rate>] [-g <rate>] [-c]
Options:
    -h, --help
        Show this help and quit.
    -d, --device
        Choose device by numero.
    -a, --accel
```


Turn accelerometer on with ODR (Hz).
-g,gyro
Turn gyroscope on with ODR (Hz).
-c,convert
Show data after unit conversion (m/s^2, rad/s)
-b,batch
Set batch timeout in ms.
Version:
1.1.0

For example, the sampling frequency is 100Hz,

\$ exa	mple_gsensor -d	2 -a 100	-g 100			
Accel	body (LSB) ,	+113,	+13, +4077,	17478588377202, 17	76.818, 1	1.128
Gyro	body (LSB) ,	-4,	+5, +1,	17478588342172,	16.954,	1.163
Accel	body (LSB) ,	+114,	+13, +4082,	17478598377202,	10.000, 1	1.338
Gyro	body (LSB) ,	-3,	+5, +1,	17478598307142,	9.965,	1.408
Accel	body (LSB) ,	+111,	+8, +4084,	17478608377202,	10.000, 1	1.176
Gyro	body (LSB) ,	-5,	+6, +1,	17478608272112,	9.965,	1.281
Accel	body (LSB) ,	+111,	+12, +4094,	17478618377202,	10.000, 1	1.226
Gyro	body (LSB) ,	-4,	+4, +1,	17478618237082,	9.965,	1.366
Accel	body (LSB) ,	+114,	+14, +4092,	17478628377202,	10.000, 1	1.109
Gyro	body (LSB) ,	-4,	+5, +0,	17478628202052,	9.965,	1.284

	,							
\$ example_gsensor -d 3	sexample_gsensor -d 2 -a 100 -g 100 -c							
Accel body (m/s^2),	+0.270545,	+0.021548,	+9.761160,	17568890862843,	169.503,	1.343		
Gyro body (rad/s),	-0.005326,	+0.005326,	+0.001065,	17568890827813,	9.549,	1.378		
Accel body (m/s^2),	+0.270545,	+0.028730,	+9.806650,	17568900862843,	10.000,	1.376		
Gyro body (rad/s),	-0.004261,	+0.005326,	+0.001065,	17568900792783,	9.965 <i>,</i>	1.446		
Accel body (m/s^2),	+0.268151,	+0.021548,	+9.782708,	17568910862843,	10.000,	1.426		
Gyro body (rad/s),	-0.005326,	+0.005326,	+0.000000,	17568910757753,	9.965,	1.531		
Accel body (m/s^2),	+0.265756,	+0.023942,	+9.787497,	17568920862843,	10.000,	1.423		
Gyro body (rad/s),	-0.005326,	+0.006392,	+0.000000,	17568920722723,	9.965,	1.563		

6.5. example_ble

It demonstrates how to send commands to the BLE module and receive response data. For more information on the module, please refer to the "BLE" section.

The method is as follows, with the main steps being to enable power supply and test command:

\$ gpioset 4 15=1

The example_ble tool help information is as follows.

\$ example_ble -h

Usage:

./example_ble <BLE command string>

-r Loop read BLE message.

-t BLE cmd terminal.

Example:

./example_ble AT+X=10,0
./example_ble -r
./example_ble -t

Use the tool to send the AT+F=1 command to read the BLE firmware version.

\$ example_ble AT+F=1
Send Commond: AT+F=1
Recv Response: +ACK:F,1,01.01,OK

Query the BOOT APP version of the BLE module, \$ example_ble AT+F=17,0 Send Commond: AT+F=17,0 Recv Response: +ACK:F,17,0,GV850_BT_BOOTR00A01V01,OK

\$ example_ble AT+F=17,1
Send Commond: AT+F=17,1
Recv Response: +ACK:F,17,1,GV850_BT_R00A01V01,OK

For efficient testing, example_ble can support AT command line mode. In this mode, you can input continuously and get the returned results. Ctrl+Backspace can delete the input content, and Ctrl+C can exit the program.

This mode can be used to monitor Bluetooth active reporting events or transparent transmission messages. When using a serial terminal connection, if the Enter key is displayed as ^M and the carriage return is not reached, press the Ctrl+Enter key combination.

example_ble -t at+f=17,1 +ACK:F,17,1,GV850_BT_R00A01V01,OK at+f=17,0 +ACK:F,17,0,GV850_BT_BOOTR00A01V01,OK at+f+18 Error input, After entering a newline, enter again.

at+f=18 +ACK:F,18,1,49A7101029DF,7805413D60E0,OK

at+x=10,0 +ACK:X,10,0,1,OK Query the connect status.

6.6. example_input_intr

Demonstrates how to perform interrupt detection. GPIO PH6, PI3, PD9, PG4, PG1 are registered as Input devices through the gpio-keys driver, and the level change events of these pins can be received through /dev/input/event0.

\$ cat /proc/interrupts grep stm32gpio					
68:	0	stm32gpio	1 Edge	Wakeup-PG1	
69:	0	stm32gpio	3 Edge	Wakeup-PI3	
70:	0	stm32gpio	4 Edge	Wakeup-PG4	
71:	0	stm32gpio	6 Edge	Wakeup-PH6	
72:	5	stm32gpio	7 Edge	Wakeup-PB7	
73:	0	stm32gpio	9 Edge	Wakeup-PD9	

Start the detection program and read the /dev/input/event0 node. When the above interrupt occurs, a key input event will be generated.

\$ example_input_intr

When the button is pressed/released, the following will be printed, and the corresponding pin is PH6.

type:1, code:260, value:1 type:1, code:260, value:0

When the IGN signal is ON/OFF, the following will be printed, and the corresponding pin is PI3.

type:1, code:258, value:1 type:1, code:258, value:0

When DIN2 is triggered/contacted at a low level, the following will be printed, and the corresponding pin is PD9.

type:1, code:262, value:1 type:1, code:262, value:0

When the Bluetooth module performs interaction, the following printout will be displayed, and the corresponding pin is PG4.

type:1, code:259, value:0 type:1, code:259, value:1

When the CAN module enters sleep mode and exits sleep mode, the following information will be printed, and the corresponding pin is PG1.

type:1, code:257, value:0 type:1, code:257, value:1

6.7. gpiosnoop

This tool is used to get the output value of the GPIO port in the output state. For example, after setting the value of

GPIO PA4, read the value set by PA4 without changing the output mode of PA4. Unlike gpioget, it does not change the input and output direction of the GPIO port.

\$ gpiosnoop 0 4		
0		
or		
\$ gpiosnoop gpiocchip0 4		
0		

7. Queclink Software Modules Queclink Software Modules

In order to speed up the development progress of developers on this hardware platform and reduce the development difficulty, Queclink will gradually complete the basic, public code development work. This part of the work mainly includes the maintenance of the compilation environment, C language coding standards, C language basic library usage standards, device storage and directory planning, basic C tool library, complete log library, device system, basic service module, hardware module business encapsulation library, etc.

Our goal is to build a standardized, stable, reasonable, and sustainable Liunx embedded development platform. This goal is being continuously promoted, and service modules for some modules are currently provided.

In order to accelerate the development progress of developers on this hardware platform and reduce the development difficulty. Queclink will gradually complete the basic, public code development work. This part of the work mainly includes the maintenance of the compilation environment, C language coding standards, C language basic library usage standards, device storage and directory planning, basic C tool library, complete log library, device system, basic service module, hardware module business encapsulation library, etc.

Our goal is to build a standardized, stable, reasonable, and sustainable Liunx embedded development platform. This goal is being continuously promoted, and service modules for some modules are currently provided.

7.1. Canobd

7.1.1. Introduction to CAN Module

The GV850 series products have a powerful CAN OBD module to support vehicle-mounted J1939/J1708/FMS/OBD CAN services. Installing the device in the vehicle and connecting it to the vehicle CAN bus can obtain real-time vehicle operation data, actuator status, fault information, driver information, vehicle behavior statistics, and driver behavior statistics. This information can be further processed to obtain more use value.

The CAN module supports obtaining data from Tachograph and downloading driving record files. The CAN module supports the KLine hardware interface and KLine protocol.

The biggest advantage of this CAN module is that it supports a wide range of vehicle models, almost covering the mainstream models on the market. It not only supports passenger cars but also heavy vehicles such as buses and trucks. Secondly, the protocol design of this module is more suitable for expansion and updating. It is a very excellent vehicle-mounted CAN bus module.

In order to facilitate developers to use the module more deeply, Queclink provides the module's operation library and basic service module. They are canobd support library and canobd business software. The canobd support library and business software are written in C code. The canobd support library is provided in the form of a dynamic library. The canobd business code provides a UBUS bus call interface to the outside world. The overall structure diagram of canobd is shown in the figure below.

The GV850 series products have a powerful CAN OBD module to support vehicle-mounted J1939/J1708/FMS/OBD CAN services. Installing the device in the car and connecting it to the vehicle CAN bus can obtain real-time vehicle operation data, actuator status, fault information, driver information, vehicle behavior statistics and driver behavior statistics. This information can be further processed to obtain more use value.

The CAN module supports obtaining data from Tachograph and downloading driving record files. The CAN module supports KLine hardware interface and KLine protocol.

The biggest advantage of this CAN module is that it supports a large number of models, almost covering the mainstream models on the market. It not only supports passenger cars but also heavy vehicles such as buses and trucks. Secondly, the protocol design of this module is more suitable for expansion and updating. It is a very excellent vehicle-mounted CAN bus module.

In order to facilitate developers to use the module more deeply, Queclink provides the module's operation library and basic service module. They are canobd support library and canobd business software respectively. The canobd support library and business software are written in C code. The canobd support library is provided in the form of a dynamic library. The canobd business code provides a UBUS bus call interface to the outside world. The overall structure diagram of canobd is shown in the figure below.

The basic usage process of the CAN module is shown in the figure below. The basic usage process of the CAN module is shown in the figure below.

7.1.2. CAN module automotive parameter table

The CAN module supports a lot of vehicle parameters. For details, refer to the "[24-01-03] CAN-Logistic v3 protocol XON-XOFF.pdf" manual "Inquiries about car's parameters from the CAN-bus" section. The following lists canobd Supports vehicle parameters that are already supported by the library.

The CAN module supports a lot of vehicle parameters. For details, refer to the "[24-01-03] CAN-Logistic v3 protocol XON-XOFF.pdf" manual "Inquiries about car's parameters from the CAN-bus" section. The The following lists the vehicle parameters that the canobd support library already supports.

Car parameter table 1: Car parameter table 1:

•	
Parameter name	describe

ignition_key	Ignition status
total_distance_unit	Total mileage unit
total_distance	Total mileage
total_fuel_used	Total fuel consumption
fuel_level_in_liters	Fuel level (liters)
fuel_level_in_percents	Fuel remaining (percentage)
range	Remaining mileage
vehicle_speed	Car speed
engine_speed	Engine speed
accelerator_pedal_pressure	Accelerator pedal pressure
brake_pedal_pressure	Brake pedal pressure
engine_coolant_temperature	Engine coolant temperature
total_engine_hours	Total engine hours
total_driving_time	Total driving time
total_engine_idle_time	Total engine idling time
total_idle_fuel_used	Total idle fuel usage
axle_weight	Axle load
tachograph_information	Speed recorder information
detailed_information	Vehicle details
lights	Light status
doors	Door status
rapid_brakings	Emergency braking times
rapid_accelerations	Rapid acceleration times
total_vehicle_overspeed_time	Total time of vehicle speeding
total_vehicle_engine_overspeed_time	Total time the vehicle's engine is overspeeding
sw_version	reserve
battery_level_in_percents	Electric vehicle battery charge percentage
gaseous_fuel	Gas remaining
battery_charging_status	Electric vehicle battery charge status
tacho_all_infor	Tachometer information
drivetrain_related_info	Transmission system related information
battery_voltage	Electric vehicle battery voltage
battery_charging_cycles	Electric vehicle battery charging time
total_energry_recuperated	Tram Total Power Recovery
battery_temperature	Electric vehicle battery temperature
battery_charging_current	Electric vehicle battery charging current
battery_power	Electric vehicle battery charge
battery_soh	Electric vehicle battery health status
total_energy_used	Total energy consumption of trams
total_energy_used_when_idling	Total energy consumption of electric vehicles at idling
total_energy_charged	Total battery charge
tacho_rtc	RTC time of the tachometer

Car parameter table 2:

Parameter name	describe
adblue_level	Catalyst fluid volume
axle_weight_1st	Axis 1 load
axle_weight_3rd	Axis 3 load
axle_weight_4th	Axis 4 load
current_fuel_consumption	Current fuel consumption
current_fuel_consumption_unit_is_l_per_h	Current fuel consumption unit L/h
tachograph_overspeed_indicator	Driving Recorder Speeding Indicator
tachograph_vehicle_moving_indicator	Driving Recorder Vehicle Driving Indicator
drive_direction_from_tachograph	Driving recorder displays driving direction
input3	Input3 analog input signal
engine_braking_factor	Engine braking deceleration times
pedal_braking_factor	Pedal brake system deceleration times
total_accelerator_kick_downs	Total number of downshifts during acceleration
total_effective_engine_speed_time	Total effective engine speed time
total_cruise_control_time	Total cruise control time
total_accelerator_kick_down_time	Total time of acceleration and resistance
total_brake_applies	Total brake application
engine_torque	Engine torque
outair_tmeperature	Outdoor air temperature
diagnastic_trouble_codes	Diagnostic Trouble Codes
diagnatic_trouble_codes_format	Diagnostic trouble code format
retarder_selection	Reducer gear selection

Car parameter table 3:

Parameter name	describe
th_driver1_card_number	Driver Card 1 Number
th_driver2_card_number	Driver Card 2 Number
th_driver1_name	Driver 1 Name
th_driver2_name	Driver 2 Name
vin	Vehicle VIN number
registration_number	License plate number
service_distance	Distance of service
cold_engine_start_counts	Engine Cold Start Count
engine_all_start_counts	Engine all start counts
engine_start_by_ign_counts	by IGN Launch Engine
driving_time_with_cold_engine	Driving time with a cold engine
handbrake_applies_on_ride	the handbrake was used

Driver Information Card Form:

Parameter name	describe
End_Of_Last_Daily_Rest_Period	End of the last break of the day
End_Of_Last_Weekly_Rest_Period	The last week of break is over
End_Of_Second_Last_Weekly_Rest_Period	The second break of the last week is over
Maximum_Daily_Period	Maximum daily cycle
Number_Of_Times_9h_Daily_Driving_Times_Exceed	Number of times you drive more than 9 hours per day
Number_Of_Used_Reduced_Daily_Rest_Period	Use reduces the number of breaks per day
Reaining_Current_Drive_Time	Remaining driving time
Reasoning_Time_Until_Next_Break_Or_Rest	Time remaining before next break or rest
Duration_Of_Next_Break_Rest	Next break time
Reasoning_Time_Of_Current_Break_Rest	Next break time
Time_Left_Until_Next_Driving_Period	Time remaining until next driving period
Duration_Of_Next_Driving_Period	Duration of next driving session
Reasoning_Driving_Time_On_Current_Shift	Remaining driving time for the current shift
Time_Left_Until_New_Daily_Rest_Period	The rest of the day until the new daily break time
Minimum_Daily_Rest	Minimum daily rest time
Remaining_Driving_Time_Of_Current_Week	Remaining driving time this week
Time_Left_Until_New_Weekly_Rest_Period	Time remaining until the new weekly break
Minmum_Weekly_Rest	Minimum weekly rest time
Open_Compensation_In_The_Last_Week	Public deductions in the last week
Open_Compensation_In_Weekly_Before_Last	Public deductions for the previous week
Open_Compensation_In_2nd_Week_Before_Last	Deduction for the first two weeks
Continuous_Driving_Time	Additional information (coming soon)
Cumulative_Break_Time	Continuous driving time
Current_Duration_Of_Select_Activity	Cumulative break time
Accumulated_Driving_Time_Privious_And_Current_We ek	The current duration of the selected activity
Current_Daily_Driving_Time	Total driving time in the previous week and the current week
Current_Weekly_Driving_Time	Current daily driving time
Cumulative_Uninterrupted_Rest_Time	Current weekly driving time
Maximum_Daily_Driving_Time	Cumulative uninterrupted rest time

7.1.3. CANOBD Core Interface

CANOBD business service calls the C API function of canobd support library and provides UBUS bus calling method. The core interface is listed here for quick understanding. If you need more abundant interfaces, please contact Quecklink.

CANOBD business service calls the C API function of canobd support library and provides UBUS bus calling method. The core interface is listed here for quick understanding. If you need more abundant interfaces, please contact Quecklink.

7.1.3.1. Get API version

This interface is used to obtain version library information, the interface is get_canobd_api_version , and the payload is empty.

This interface is used to obtain version library information, the interface is get_canobd_api_version, and the payload is empty.

Example:

Example:

\$ ubus call canobd get_canobd_api_version

7.1.3.2. Raw frame channel

This interface encapsulates the raw frame into a protocol and then transparently transmits it to the CAN module, and then returns the frame returned by the CAN module. This interface is used for testing and special application scenarios. Interface action_canobd_raw_frame_send , payload {"frame":[String array]} . The parameters are as shown in the following table.

This interface encapsulates the raw frame into a protocol and then transparently transmits it to the CAN module, and then returns the frame returned by the CAN module. This interface is used for testing and special application scenarios. Interface action_canobd_raw_frame_send, payload {"frame": [String array]}. Parameters are as follows.

name	type	Remark
frame	string array	The request frame is organized according to the CAN module frame protocol, starting from the address bit, excluding the check bit, and no escape is required. The request frame is organized according to the CAN module frame protocol, starting from the address bit, excluding the check bit, and no escape is required.

Example:

Example:

\$ ubus call canobd action_canobd_raw_frame_send '{"frame":["0xb3", "0x20","0xd7"]}'

7.1.3.3. Query module status

This interface is used to obtain all status information of the CAN module and canobd support library. Interface get_state , the payload is empty. When carrying {"scope": "String"} payload, the corresponding status can be obtained separately. The request payload field list is as follows.

This interface is used to obtain all status information of the CAN module and canobd support library. Interface get_state, the payload is empty. When carrying {"scope": "String"} payload, the corresponding status can be obtained separately. The request payload field list is as follows.

name	type	Remark
		sync_state: Get real-time model synchronization status
		sync_history_state: Get the established model synchronization state
scope	string	base_init_info_state: Get the basic configuration and status information
		of the module
		upgrade_state: Get the upgrade status

fireware_state: Get firmware status
module_conf_state: Get module configuration state
car_params_poll_state: Get vehicle parameter polling state
car_base_state: Get vehicle basic information and status
sync_state: Get real-time model synchronization status
sync_history_state: Get established model synchronization status
base_init_info_state: Get basic configuration and status information of
the module
upgrade_state: Get upgrade status
fireware_state: Get firmware status
module_conf_state: Get module configuration status
car_params_poll_state: Get vehicle parameter polling status
car_base_state: Get vehicle basic information and status

Example:

\$ ubus call canobd get_state all	states
-	514165
\$ ubus call canobd get_state '{"scope": "sync_state"}'	synchronization state
<pre>\$ ubus call canobd get_state '{"scope": "sync_history_state"}'</pre>	history synchronization state
\$ ubus call canobd get_state '{"scope": "base_init_info_state"}'	basic information state
\$ ubus call canobd get_state '{"scope": "upgrade_state"}'	upgrade state
\$ ubus call canobd get_state '{"scope": "fireware_state"}'	firmware version state
<pre>\$ ubus call canobd get_state '{"scope": "module_conf_state"}'</pre>	configuration version state
\$ ubus call canobd get_state '{"scope": "car_params_poll_state	e"}' vehicle parameter polling state
\$ ubus call canobd get_state '{"scope": "car_base_state"}'	Vehicle and bus state

"device_mode": "CANHEX_MODE_OPERATING", "mode_reason0": "CANHEX_MODE_REASON_NONE", "mode_reason1": "CANHEX_MODE_REASON_NONE", "serial_mode": "CANHEX_MODE_SERIAL_XONXOFF", "protocol_work_mode": "CANHEX_MODE_WORK_WORKING", "new_firmware_valid": 0, "new_conf_valid": 0, "current_conf_valid": 1, "serial_conf_valid": 1, "model_id": "004F", "model_id_state": "SET_BY_SYNC", "car_name": "Seat Altea (04-)", "thr_support": 0, "sn": "3863285", "event_ack_enable": 0, "canbus_active_mode": 0, "fuel_measure_delay": 0,

"nonautomatic_sync": 0,
"can1_send_disable": 0,
"uart_tx_wakeup": 0,
"short_wakeup": 0,
"low_power_mode": 1,
"ignore_diagnostic_tools": 0,
"deep_sleep_mode_disable": 0,
"thr_compatibility": 0,
"can2_send_disable": 0,
"query_tachograph_mode": 0,
"scope": "base_init_info_state",
"from": "cache",

"rtn": "success"

}

Reply load parameter table:

name	type	illustrate
name	type	Remark
		CANHEX_MODE_OPERATING: Operation mode
		CANHEX_MODE_TEST: Test mode
		CANHEX_MODE_CAN_BUS_SYNC_PROCEED: CAN BUS synchronization
		processing status
		CANHEX_MODE_DIAG_START: Diagnosis starts
		CANHEX_MODE_DIAG_END: Diagnosis ends
		CANHEX_MODE_CAN_BUS_SYNC_FAILED: CAN BUS synchronization failed
		CANHEX_MODE_FAIL_SAFE: Fail-safe mode
device_mode	string	
		CANHEX_MODE_OPERATING: Operation mode
		CANHEX_MODE_TEST: Test mode
		CANHEX_MODE_CAN_BUS_SYNC_PROCEED: CAN BUS synchronization
		processing status
		CANHEX_MODE_DIAG_START: Diagnosis start
		CANHEX_MODE_DIAG_END: Diagnosis end
		CANHEX_MODE_CAN_BUS_SYNC_FAILED: CAN BUS synchronization failed
		CANHEX_MODE_FAIL_SAFE: Fail-safe mode
		CANHEX_MODE_REASON_NONE: Module reason register value 0, clear status
		CANHEX_MODE_REASON_ONGOING: ongoing state
mode_reason0	string	
		CANHEX_MODE_REASON_SUCCESS: Success status
		CANHEX_MODE_REASON_CAN_BUS_UNKNOWN: CAN BUS is not recognized
		CANHEX_MODE_REASON_CAN_BUS_UNCONNECT: CAN BUS is not

		recognized
		CANHEX_MODE_REASON_ANALYSIS: CAN BUS not connected analysis
		CANHEX_MODE_REASON_NONE: Module reason register 0 value, clear status
		CANHEX_MODE_REASON_ONGOING: In progress status
		CANHEX_MODE_REASON_SUCCESS: Success status
		CANHEX_MODE_REASON_CAN_BUS_UNKNOWN: CAN BUS is not recognized
		CANHEX_MODE_REASON_CAN_BUS_UNCONNECT: CAN BUS is not
		recognized
		CANHEX_MODE_REASON_ANALYSIS: CAN BUS is not connected to analysis
mode_reason1	string	Same as above
		CANHEX_MODE_SERIAL_NONE: Serial port mode, clear status
		CANHEX_MODE_SERIAL_XONXOFF: XONXOFF mode
		CANHEX_MODE_SERIAL_ASCII: ASCII mode
		CANHEX_MODE_SERIAL_CFG_MODE:
		CANHEX_MODE_SERIAL_WORK_MODE:
serial_mode	string	
		CANHEX_MODE_SERIAL_NONE: Serial port mode, clear state
		CANHEX_MODE_SERIAL_XONXOFF: XONXOFF mode
		CANHEX_MODE_SERIAL_ASCII: ASCII mode
		CANHEX_MODE_SERIAL_CFG_MODE:
		CANHEX_MODE_SERIAL_WORK_MODE:
		CANHEX_MODE_WORK_NONE: Clear status
		CANHEX_MODE_WORK_WORKING: Working mode
		CANHEX_MODE_WORK_CFG_MODE: Configuration mode
protocol_work_mode	string	
		CANHEX_MODE_WORK_NONE: Clear status
		CANHEX_MODE_WORK_WORKING: Working mode
		CANHEX_MODE_WORK_CFG_MODE: Configuration mode
		0: No new configuration can take effect at present
new_firmware_valid	int	1: There is a new configuration that can take effect.
		0: No new configuration can be effective at the moment
		1: New configuration can be effective at the moment
		0: No new configuration can take effect at present
new_conf_valid	int	1: There is a new configuration that can take effect.
		0: No new configuration can be effective at the moment
ourront configuration	int	1: New configuration can be effective at the moment
current_conf_valid	int	0: The current configuration is invalid

		1: The current configuration is valid
		0: The current configuration is invalid
		1: The current configuration is valid
		-
		0: Serial port not configured (cannot be installed)
serial_conf_valid	int	1: The serial port has been configured
		0: Serial port not configured (cannot be installed)
		1: Serial port configured
model_id	string	Vehicle model id
	ling	Vehicle model id
		MISS: Clear status
		EMPTY: model id is not set
model_id_state	string	SET_BY_HAND: Manually set the model id
		SET_BY_HAND2: Manually set the machine model
		SET_BY_SYNC: Automatic synchronization
car_name	string	Vehicle Name
		0: Does not support the reading function of the driving recorder
thr_support	int	1: Support
S	string	CAN module SN
		0: Received an invalid response to the event
event_ack_enable	int	1: Received event must be responded
		0: CAN node works in silent mode
canbus_active_mode	int	1: The CAN node operates in active mode.
		0: No delay in fuel measurement
fuel_measure_delay	int	
		1: Fuel measurement delay
nonautomatic_sync	int	0: Allow automatic synchronization when the model id is empty.
		1: Disable automatic synchronization when the model id is empty.
can1_send_disable	int	0: can2 can send information
		1: can2 prohibits sending information
uart_tx_wakeup	int	0: The TX pin status is idle when the CAN module is in sleep mode.
		1: The TX pin status is working when the CAN module is in sleep mode.
short_wakeup	int	0: Enter deep sleep after 60 seconds after waking up
short_wakeup		1: Enter deep sleep 2 seconds after waking up
low_power_mode	int	0: Disable low power mode
		1: Enable low power mode
ignore_diagnostic_to	int	0: Stop sending messages when a diagnostic tool is detected
ols	int	1: Ignore diagnostic tools
deep_sleep_mode_dis		0: Enable deep sleep function
able	int	1: Disable the deep sleep function
	int	0: Dashcam compatibility is disabled
thr_compatibility		1: Enable the driving recorder function compatibility
		0: can2 can send information
can2_send_disable	int	1: can2 prohibits sending information
query_tachograph_m		0: Disable request for driving recorder
ode	int	1: Request the dashcam to be in IGN ON state only.

2: Smart mode, requested when CABBUS is active.
3: You can always request.

7.1.3.4. Query car Model ID, VIN information

This interface is used to obtain the vehicle name, model id and model id source in the CAN module. Interface get_car_params_single, payload {"params_name":"String", "from": "String"}. See the table below for parameter payload description.

name	type	Remark
params_name	string	car_name: vehicle name
from	string	cache: Get from the cache of the canobd support library
	string	module: Get directly from the CAN module and update the cache

\$ ubus call canobd get_car_params_single '{"params_name":"model_id", "from": "cache"}'
\$ ubus call canobd get_car_params_single '{"params_name":"model_id", "from": "module"}'
\$ ubus call canobd get_car_params_single '{"params_name":"car_name", "from": "module"}'
\$ ubus call canobd get_car_params_single '{"params_name":"vin", "from": "module"}'

```
"model_id": "004F",
"model_id_state": "SET_BY_SYNC",
"car_name": "Seat Altea (04-)",
"from": "module",
"rtn": "success"
```

}

Reply payload meaning table:

name	type	Remark
model_id	string	Hex value, vehicle model id, CAN module definition.
		MISS: Clear status
		EMPTY: model id is not set
model_id_state	string	SET_BY_HAND: Manually set the model id
		SET_BY_HAND2: Manually set the machine model
		SET_BY_SYNC: Automatic synchronization
car_name	string	Vehicle Name

7.1.3.5. Clear car model id

This interface is used to clear the vehicle model id in the CAN module and delete the synchronization record kept in the canobd support library. Interface clear_car_model_id, payload empty. Example:

```
$ ubus call canobd clear_car_model_id
{
    "rtn": "success"
```


7.1.3.6. Set the car model id

This interface is used to manually set the vehicle model id in the CAN module, which will delete the synchronization record kept in the canobd support library. It is still necessary to call the "Car model id security synchronization" interface to verify the model id process. The canobd support library can be compatible with the scenarios of manually setting the model id and automatically synchronizing the model id.

name	type	Remark
model_id string	atripa	0-ffff, HEX value. Vehicle model id, the specific value can be found in
	string	the information provided by the CAN module manufacturer.

Example:

```
$ ubus call canobd set_car_model_id_hand '{"model_id": "0x0173"}'
{
     "rtn": "success"
}
```

7.1.3.7. Perform secure synchronization of car model ID

This interface performs the vehicle model id security synchronization process according to the internal state of the CAN module. When the vehicle VIN code can be obtained, the synchronization is considered successful. Therefore, after manually setting the model id, you also need to use this interface to verify whether the set model id is normal.

Interface sync_car_model_id_safe, payload empty.

After the interface is called successfully, use the ubus call canobd get_state command to query the result.

Example:

```
$ ubus call canobd sync_car_model_id_safe
{
    "rtn": "success"
}
```

7.1.3.8. Get synchronization real-time status

This interface is used to obtain the real-time status of the CAN module vehicle model id synchronization. The synchronization confirmation status is obtained through the "14. Get synchronization confirmation status" interface. Interface get_state, payload {"scope": "String"}.

Example:

```
ubus call selftask canobd.get_state '{"scope": "sync_state"}'
{
    "safe_sync_type": "MISS",
    "sync_frame_state": "MISS",
    "dev_mode_sync_result": "MISS",
    "dev_mode_sync_reason": "MISS",
```


"safe_sync_result": "MISS",
"ignition_on": "UNKNOWN",
"engine_on": "UNKNOWN",
"model_id_state": "MISS",
"model_id": "0000",
"vehicle_info": "0",
"vehicle_info_valid": 0,
"vin": "",
"vin_len": 0,
"scope": "sync_state",
"from": "cache",
"rtn": "success"

				falls, de salals
I DE LEDIVIORO	narameters are	snown ii	n the	following table.
	purumeters are			tonowing tubic.

name	type	illustrate
name	type	Remark
		MISS: Clear status
safe_sync_type	string	AUTO_SYNC: Automatically synchronize and obtain model id
		SET_MODEL: Manually set the model id
		MISS : Clear status
		ONGOING : The synchronization process is in progress
sync_frame_state	string	OK : Synchronization successful
sync_iranie_state	sting	FAILED_UNRECOGNIZED : Unrecognized failure
		FAILED_COMMU : Communication failed
		FAILED_START : Synchronization start failed
		MISS: Clear status
dev_mode_sync_result	string	ONGOING: Ongoing
		FAILED: Failed
		MISS: Clear status
		ONGOING: Ongoing
dev_mode_sync_reason	string	OK: Completed
	Stillig	ANALYSIS: Analysis
		UNRECOGNIZED: Unrecognized
		UNCONNECTED: Not connected to the CAN bus
		MISS: Clear status
safe_sync_result	string	OK: Security synchronization successful
		FAILED: Security synchronization failed
		UNKNOWN : IGN status, unknown
ignition_on	string	OFF : IGN OFF
		ON : IGN ON
		UNKNOWN: Engine status, unknown
engine_on	string	
		OFF: Engine OFF

		ON: Engine ON
		MISS: Clear status
		EMPTY: model id is not set
model_id_state	string	SET_BY_HAND: Manually set the model id
		SET_BY_HAND2: Manually set the machine model
		SET_BY_SYNC: Automatic synchronization
model_id	string	Hex value, 0~0xffff.
vehicle_info	string	Hex value.
vehicle_info_valid	int	0: invalid; 1: valid.
vin	string	VIN code: VIN code
vin_len	int	Value, VIN code length

7.1.3.9. Search model id by car parameter name

This interface is used to query the model id in the CAN module using the vehicle name. The -t parameter needs to be used to set the ubus call timeout. The request timeout should be at least 80 seconds. Interface action_canobd_model_id_search, payload {"car_name": "String"}, timeout 80. Because the query is a keyword query, there will be multiple results. The user needs to match the model id of the most accurate result as the target model id.

name	type	Remark
car_name	string	Vehicle name keywords

Example:

}

7.1.3.10. Get vehicle parameter table values

This interface is used to obtain the car parameter table. These data are maintained by the car parameter polling service. For the meaning of the reply payload, refer to "Car Parameter Table 1", "Car Parameter Table 2" and "Car

Parameter Table 3". Interface get_car_params_content , payload {"scope": " String "} .

name	type	Remark
	string	All: Get all driver card information
		car_param1: Get the information of car parameter table 1
scope		car_param2: Get the information of car parameter table 2
		car_param3: Get the information of car parameter table 3

Example:

\$ ubus call canobd get_car_params_content
\$ ubus call canobd get_car_params_content '{"scope": "car_param1"}'
\$ ubus call canobd get_car_params_content '{"scope": "car_param2"}'
\$ ubus call canobd get_car_params_content '{"scope": "car_param3"}'

7.1.3.11. Get car driver record information

This interface reads the driving time and driving behavior information of the driver card from the cache of the canobd support library. Interface get_car_driver_card_record , payload empty or {"scope": String}, payload parameters as shown in the following table, and the response result refers to "Driver Information Card Table".

name	type	Remark
	string	All: Get all driver card information
scope	string	card1: Get the information of driving card 1
	string	card2: Get the information of driving card 2

Example:

\$ ubus call canobd get_car_driver_card_record '{"scope": "card1"}'
\$ ubus call canobd get_car_driver_card_record '{"scope": "card2"}'

\$ ubus call canobd get_car_driver_card_record '{"scope": "all"}'

7.1.3.12. Firmware upgrade interface

This interface is used to upgrade the firmware of the CAN module. The module firmware is provided by the CAN module manufacturer. The firmware of each module is bound to the module's SN, and different devices cannot be universal. Interface action_canobd_module_upgrade , payload {"scope": " String ", "file_path":" String "}. The meaning of the parameters is as follows.

name	type	Remark
scope	string	firmware : The upgrade type is firmware
file_path string		The path of the firmware file in the device. You need to place the firmware file
		in the specified location first, and then fill in this field

Example:

\$	ubus	call	canobd	action_canobd_module_upgrade	'{"scope":	"firmware",
"file_p	ath":"/root/	CL_v3.0.14_	sn3863230.frm"}'			
{						

"rtn": "success"

} Query progress

Example:

\$ ubus call canobd get_state '{"scope": "upgrade_state"}'

7.1.3.13.Configure the upgrade interface

This interface is used to upgrade the configuration of the CAN module. The configuration file is provided by the CAN Interface module manufacturer or generated by the tool provided by the manufacturer. action_canobd_module_upgrade, payload {"scope": " String ", "file_path":" String "}. The meaning of the parameters is as follows.

name	type	Remark
scope	string	conf: The upgrade type is configuration
file_path	string	The path of the configuration file in the device. You need to place the
liie_patri	Sung	configuration file in the specified location first, and then fill in this field.

Example:

\$	ubus	call	canobd	action_canobd_module_upgrade	'{"scope":	"conf",
"file_p	ath":"/root/c	ueclink_xon	xoff_115200.frm"}'			

7.1.3.14 Query upgrade progress

This interface is used to query the firmware or configuration upgrade status and progress. After calling "27. Firmware Upgrade Interface " or "28. Configuration Upgrade Interface ", you can query the upgrade status through this interface. Interface get_state , payload {"scope": " String "} .

Example:

```
$ ubus call canobd get_state '{"scope": "upgrade_state"}'
    "upgrade_state": "Upd Stete Ok",
    "content_type": "Upgrade Content Cfg",
    "sn": "",
    "upgrade_version": "B18E",
    "rate_progress": 100,
    "time_cost": 7,
    "desc": "Upd Fsm Check Ok",
    "scope": "upgrade_state",
    "from": "cache",
    "rtn": "success"
```

Reply payload meaning table:

name	type	Remark
upgrade_state	string	Upd Stete None : No upgrade
	String	Upd Stete Start : Upgrade starts

	Upd Stete Doing : Updating in progress
	Upd Stete Ok : Upgrade completed
	Upd Stete Terminated : Updating canceled
	Upd Stete Failed : Updating failed
	Upgrade Content None : Upgrade content has no type
	Upgrade Content Fw : The upgrade type is firmware
string	Upgrade Content Cfg : The upgrade type is configuration
	Upgrade Content Cfg Keep Model : The upgrade type is
	configuration and the model id is retained
string	CAN module SN: CAN module SN, returned when the firmware is
	upgraded
string	Version information: firmware version information or configuration
	check number
int	Range -1~1001 means failure, 0~100 means the progress of the
	processing
int	Duration, the time it takes to upgrade, in seconds
string	Description, description of the upgrade process.
	string string int int

7.1.3.15. Enter /Exit Test Mode

Enter or exit the test mode. This interface is used to simulate the parameters and status of the car to help CAN module developers to verify the developed software. Interface set_canobd_test_mode , payload {"enable": " String "} , parameters are as follows.

name	type	Remark
enable	string	1: Enter test mode
		0: Exit test mode

Example:

<pre>\$ ubus call canobd set_canobd_test_mode '{"enable": "1"}'</pre>	
\$ ubus call canobd set_canobd_test_mode '{"enable": "0"}'	

7.1.3.16. Module power control

This interface is used to control the power on and off of the power pin of the CAN module. Interface set_canobd_power, payload {"enable": " String "}. Parameters are as shown in the following table.

name	type	Remark
enable	strina	0: Turn on the power
		1: Turn off the power

Example:

Turn on the module power

\$ ubus call canobd set_canobd_power '{"enable": "1"}'

Turn off the module power

\$ ubus call canobd set_canobd_power '{"enable": "0"}'

7.2. Batterymgr

7.2.1. Service Introduction

This software module manages the safe and efficient charging and discharging of the internal battery. With it running in the background, users do not have to worry about when to charge the battery, whether the charging temperature is too high , etc. Battery management is essential for the GV850 hardware to meet CE and other certifications.

The battery capacity of this product is 1100mAh 4.07Wh. The nominal voltage is 3.7V. This software module realizes highly configurable battery charging and discharging process management. It mainly realizes five basic functions.

1) Battery in-place inspection and activation management.

2) Battery overcharge, over discharge and recharge management.

3) Battery high and low temperature charging management.

4) Calculate battery capacity (based on the charge and discharge curve).

5) Battery charge and discharge control, attribute and status acquisition interface.

7.2.2. Batterymgr management logic

7.2.2.1. Battery in-place check

When the battery management service is started, the battery presence check process will be performed first, and the battery presence status will be determined by judging the battery voltage or the battery presence detection pin. After the presence check process, the battery presence status can be obtained. Currently, the software has set four states, namely "Initialization not completed", "Battery not in place", "Battery in place and normal", and "Battery in place, but needs to be activated".

There is no battery presence detection pin in the hardware at present, but we have taken it into account in the implementation of the service program. The in-place check process is shown in the figure below. In the figure below, Vnorm is the lowest check voltage in the normal state of the battery. Vdet is the lowest voltage in the battery self-protection state (activation action is required). Cdet is the maximum number of battery in-place checks.

7.2.2.2. Battery activation

After the battery in-place check process is completed, if the battery in-place status is "battery in place, but needs to be activated", the battery activation process is started. The activation process is to charge the battery intermittently until the battery voltage reaches the Vnorm state or fails to time out. There are five states generated in the activation process, namely "activation process not started", "no activation required", "activating", "activation failed", and "activation successful". The process is shown in the figure below.

Where Vnorm is the lowest voltage value of the battery under normal conditions. Tchg is the activation continuous charging duration, usually 600 seconds. Twait is the activation stop charging duration, usually 3 seconds. Cact is the number of activation charges. When the number of activation charges exceeds this threshold, and the battery voltage still does not meet the minimum threshold Vnorm of the normal voltage, it is determined to be an activation failure.

After the activation process is completed, the battery initialization is complete. The next step is to manage the

battery usage.

7.2.2.3. Overcharge protection mechanism:

There are many reasons for overcharging, one of which is charging the battery for a long time after it is fully charged. This will reduce the battery life or bring the risk of battery damage. The battery management module determines whether the battery is fully charged under the guidance of the configuration. If it is fully charged, it will directly turn off the charging enable. This achieves the purpose of overcharging protection. The following is a brief description of the basic process of battery charging.

The battery charging process is managed by the charging IC and is divided into two stages: constant current charging and constant voltage charging. When the battery charging voltage is less than a threshold, the charging IC works in the constant current charging stage. When the battery voltage is greater than or equal to a threshold, it switches to constant voltage charging. Overcharging occurs in the constant voltage charging stage. Constant voltage charging will continue to charge the battery, but the current will gradually decrease until it is trickle charged. The battery management service uses software to control the charging enable. When it is determined that the battery is full, the charging enable can be directly turned off to stop charging. The charging process of this product is shown in the figure below.

7.2.2.4. Recharge mechanism

When the battery is fully charged and drops to the recharge voltage, the charging enable is turned on to charge the battery. This can reduce the number of battery charges and increase the battery life. When the external power is plugged in or out, the recharge flag will be cleared.

7.2.2.5. Over-discharge protection mechanism

When the battery voltage is lower than the shutdown voltage, the battery is disconnected and the power is

turned off to avoid the risk of over-discharge of the battery. This protects the battery voltage from being too low.

7.2.2.6. Charging timeout mechanism

Through theoretical calculation and actual charging time, the baseband gives the charging timeout time Tc. When the charging time exceeds Tc, the software controls the charging enable function to be turned off for 2 minutes, and then the charging enable is turned on again. In this case, retry twice. If the charging is still not completed after two retries, and the battery voltage is not 100%, the "battery damage or charging function damage fault" is reported. The actual charging time*1.5 is used to get it.

The charging process, recharge mechanism, and charging timeout process are shown in the figure below. Tc is used as the charging timeout threshold. Vfull is the full-charge voltage value, which is mainly used to determine whether it is in a constant-voltage charging state at the time. Whether it is fully charged needs to be determined based on the charging current.

7.2.2.7. High and low temperature charging and discharging management

The real-time temperature of the battery is collected through the NTC sensor carried by the battery. The charging and discharging are controlled according to the battery temperature. Currently, the default range is 0-50 degrees Celsius for charging, otherwise charging is stopped. When a high or low temperature event occurs, the charging function will be turned on again when the temperature needs to be restored to 5-45 degrees Celsius. Discharges are currently not treated at high and low temperatures.

7.2.2.8. Battery Charge Calculation

At present, the management program uses three reference tables for battery charge calculation: charging

battery voltage, discharging battery voltage, and charging current. At present, the battery charge needs to be actually tested and calibrated in the above three tables to achieve an accurate and reasonable charge value.

When the battery is in the discharge state, only the discharge curve is used to calculate the power value. In the charging state, the first half of the power depends on the charging voltage curve, and the second half of the power depends on the charging line depends on the configuration file.

7.2.3. Batterymgr Core Interface

7.2.3.1. Get battery management configuration

Get the battery-related configuration of the Batterymgr service background.

```
$ ubus call selftask batt.get config
    "detection": {
         "det_vol": 1000,
         "det cnt": 3
    },
    "activate": {
         "act_vol": 3000,
         "act_cnt": 2,
         "act charge time": 600,
         "act_charge_wait_time": 3
    },
    "common": {
         "vol_extern_power": 10500,
         "charge_vol_max": 4400,
         "charge_cur_max": 400,
         "vol power off": 3460,
         "vol_fall_charge": 3950,
         "vol_fall_charge_adapt": 0,
         "vol_full_charge": 4120,
         "vol_full_charge_adapt": 0,
         "per full charge": 98,
         "cur_full_charge": 160,
         "cur_full_charge_adapt": 0,
         "timeout_charge": 28800,
         "timeout_charge_silent": 120,
         "timeout_charge_long_silent": 1200,
         "timeout_charge_try_cnt": 3
    },
    "temp_threshold": [
         {
              "temp_lower": 0,
              "temp_upper": 50,
              "temp_lower_recover_delta": 5,
              "temp_upper_recover_delta": 5
```


}], "rtn": "success"

}

The configuration parameters are described in the following table.

name	type	Remark
detection.det_vol	int	The minimum voltage threshold for battery voltage presence
		check, in mV.
detection.det_cnt	int	Maximum number of battery presence checks
activate.act_vol	int	The minimum voltage threshold for successful battery
		activation, in mV.
activate.act_cnt	int	Battery activation times
activate.act_charge_time	int	Battery activation continuous charging time, in seconds
common.vol_extern_power	int	Minimum voltage value for external power supply in place
		check, in mV.
common.charge_vol_max	int	The maximum charging voltage of the battery, in mv.
common.charge_cur_max	int	The maximum battery charging current threshold, in mA.
common.vol_power_off	int	Battery shutdown voltage, in mV.
common.vol_fall_charge	int	Recharge voltage threshold. When the voltage is lower than
		the threshold, the recharge mark is cleared and charging is
		performed.
common.vol_fall_charge_adapt	int	Recharge voltage threshold adjustment value, reserved.
common.vol_full_charge	int	Full charge voltage threshold, in mV.
common.vol_full_charge_adapt	int	Full charge voltage adjustment value, reserved.
common.per_full_charge	int	Full power percentage, reserved.
common.cur_full_charge	int	Minimum charging current threshold for full charging, in mA.
common.cur_full_charge_adapt	int	Corrected value of cur_full_charge, reserved.
common.timeout_charge	int	Charging timeout, in seconds.
common.timeout_charge_silent	int	After charging times out, stop charging for a certain period
		of time. Unit: seconds.
common.timeout_charge_long_silent	int	When multiple charging times have expired, the charging will
		stop for a certain period of time, in seconds.
common.timeout_charge_try_cnt	int	Charging timeout threshold. If the number of times exceeds
		this threshold, it is considered a timeout event.
temp_threshold.temp_lower	int	Low temperature threshold, controls whether charging is
		allowed.
temp_threshold.temp_upper	int	High temperature threshold, controls whether charging is
		allowed.
temp_threshold.temp_lower_recover_delta	int	The difference between the recovery value and the threshold
		after a low temperature event. Always a positive number.
temp_threshold.temp_upper_recover_delta	int	The difference between the recovery value and the threshold
		after a high temperature event. Always a positive number.

7.2.3.2. Get battery status

Get the status of the battery.

\$ ubus call selftask batt.get_state
{
 "mgr_enable": "1",
 "calibration_state": "BATT_CAL_NONE",

"detection_state": "BATT_DET_EXIST_VOL", "activate_state": "BATT_ACT_NO_NEED",

"discharge_enable": "1",

"discharge_voltage": "4.099",

"charge_enable": "1",

"charge_state": "CHARHING",

"charge_voltage": "4.099",

"charge_current": "194",

"recharge_state": "CLEAN_RECHAGE",

"extern_power_state": "INSERT",

"extern_power_voltage": "12.026",

"temp": "29",

"percent": "15",

"rtn": "success"

}

The battery management module provides an external interface for querying the battery status and controlling the battery charging and discharging hardware. The queryable status is shown in the following table:

name	type	Remark
mgr_enable	string	Whether battery management is enabled. 0: Disable; 1: Enable.
calibration_state	string	Battery voltage calibration status. BATT_CAL_NONE: not calibrated;
		BATT_CAL_DONE: calibrated.
detection_state	string	Battery initialization check status .
		BATT_DET_NONE: initialization is not completed;
		BATT_DET_NOT_EXIST: The battery is not in place;
		BATT_DET_EXIST_VOL: The battery is in place and normal;
		BATT_DET_EXIST_VOL_ACT: The battery is present but needs to be activated.
activate_state	string	Battery activation status.
		BATT_ACT_NONE: the activation process is not started;
		BATT_ACT_NO_NEED: No activation required;
		BATT_ACT_DOING_NOW: activating;
		BATT_ACT_FAILED: activation failed;
		BATT_ACT_SUCCESS: Activation successful.
discharge_enable	string	Battery discharge enable status. 0: Disable; 1: Enable.
discharge_voltage	string	Battery voltage when battery discharge is enabled. Unit: V.
charge_enable	string	Battery charging enable status. 0: Disable; 1: Enable.
charge_state	string	Battery charging status. CHARHING: Charging; NOT_CHARGE: Not charging.

charge_voltage	string	Battery voltage when battery charging is enabled. Unit: V.
charge_current	string	Battery charging current. Unit: ma.
recharge_state	string	Battery recharge status, that is, the mark is set after full charge and cleared
		when the battery drops to the recharge voltage.
		WAIT_RECHAGE : After fully charged, set the flag and wait for recharging;
		CLEAN_RECHAGE : Clear the mark and perform recharge.
extern_power_state	string	External power plugged in.
		INSERT : external power access;
		NOT_INSERT : external power is not connected;
extern_power_voltage	string	External voltage value, unit is V.
percent	string	Battery level, range 0-100.
temp	string	Battery NTC temperature. Unit: degrees.

ubus call selftask batt.get_config

7.2.3.3. Battery discharge/charge enable

batt.set_control '{"scope": "String", "enable":"String", "attr":"String"}'
Example:

\$ ubus call selftask batt.set_control '{"scope": "discharge", "enable":"1", "attr":"ONLY_SET_HW"}'

{

"rtn": "success"

name	type	Remark
scope	String	The object to be set. The possible range is "discharge " : means to control
		discharge enable; "charge": means to control charge enable.
enable	string	Enable flag. 0: Disable; 1: Enable.
attr	string	Control attribute flags.
		ONLY_SET_HW : Only set the hardware pins, without changing the program's
		internal flags.
		BOTH_SET_HW_SW : Set the hardware pin and change the program internal
		flag.
		ALL_SET_AND_FORCE : Set the hardware pins and change the program's
		internal flags. Disable the program's internal control mechanism and force the
		corresponding control to be set.
		RECOVERY_SW_CONTROL : Set the hardware pins and change the program
		internal flags. Recover the program's internal control mechanism.

7.3. Selftask

In order to meet the testing needs, Queclink developed the selftask module to simulate actual business scenarios. Its

main function is to collect system and module information and send messages to the server at set periodic intervals .
 selftask device runs automatically after booting, and can be stopped/started by the following commands .
 Stop the program :

\$ /etc/init.d/S99seiftask stop
OK
Start the program:
\$ /etc/init.d/S99selftask start
OK

7.3.1. Reporting messages

The message uses JSON format, as shown below:

ł

"SYSTEM":{

"version":"GV850_R00A01V01", "model":"GV850CEU", "hardware_version":"V1.01", "kernel_version":"5.15.67", "date":"Sat Jan 1 00:35:11 UTC 2000", "uptime":"00:35:02", "rootfs_size":"19.2 MB", "ram_size":"78032/106632 KB"

},

"LTE":{

"version":"EG915UECABR03A03M08_01.200.01.200",
"imei":"866344050767040",
"csq":"9,99",
"qcsq":"\"LTE\",94,-128,45,-16",
"sim":"READY",
"iccid":"89860119801697983674",
"cs":"0,1",
"qspn":"\"CHN-UNICOM\",\"UNICOM\",\"\",0,\"46001\"",
"qnwinfo":"\"FDD LTE\",\"46001\",\"LTE BAND 3\",1650",
"ps":"1",
"pdp":"1,1,1,\"10.69.230.192\"",
"sock":"0,\"TCP\",\"218.17.50.142\",971,0,2,1,0,0,\"uart1\""

},

" CANOBD " :{

"vehicle_sleep": "Active",

"can1_state": "Car Can Bus Not Used",

"can2_state": "Car Can Bus Error",

"can_bus_ign": "Can Ign Not Available",

"pin_ign": "Car Ign On",

"engine_state": "Car Engine Off",

"ddd_dstate": "Car Remote Ddd Download Not Support",


```
"th_comm_state": "Car Tachograph Comm State No",
    "kline state": "Car Kline State Bus Not Use"
},
"BATT": {
    "mgr_enable": "1",
    "calibration_state": "BATT_CAL_NONE",
    "detection_state": "BATT_DET_EXIST_VOL",
    "activate_state": "BATT_ACT_NO_NEED",
    "discharge_enable": "1",
    "discharge_voltage": "4.099",
    "charge_enable": "1",
    "charge_state": "CHARHING",
    "charge_voltage": "4.099",
    "charge_current": "194",
    "recharge_state": "CLEAN_RECHAGE",
    "extern_power_state": "INSERT",
    "extern_power_voltage": "12.026",
    "percent": "15",
    "temp": "29"
},
"WDG":{
},
"RTC":{
},
"BLE":{
    "version":"NABE5_BT_R00A02V03",
    "boot_version":"NABE5_BT_BOOTR00A01V01",
},
"GSENSOR":{
},
"GPS":{
    "firmware version": "ROM SPG 5.10 (7b202e)",
    "state": "3D fixed",
    "utc time": "2024-01-18 14:14:24",
    "longitude": "113.947969",
    "latitude": "22.573546",
    "altitude": "116.400002",
    "speed": "0.009260km\/h"
},
```

"type":"external",


```
"version":"3.0.8m",

},

"RS232":[{

},

{

}],

"RS485":{

},

"16PIN":{

},

"10PIN":{

},
```

The message data parameters are described as follows:

SYSTEM section:

name	type	Remark
version	string	Software version , such as :
		GV850_R00A01V01
model	string	Device model , such as :
		GV850CEU
har dware_version	string	Hardware version , such as:
		V1.01
kernel_version	string	Kernel version, such as:
		5.15.67
date	string	System time, such as:
		Sat Jan 1 00:20:59 UTC 2000
uptime	string	Run time, such as :
		00:21:02
rootfs_size	st ring	
r am_size	st ring	Memory status , such as:

For the LTE part, the message parameters are described in the following table :

name	type	Remark
version	string	Firmware version, such as:
		EG915UEUABR02A05M08_01.001.01.001
im ei	string	Module IMEI.

csq	string	Signal quality .
Qq	string	Signal quality .
sim	string	SIM card status ,
iccid	string	SIM card number ,
CS	string	CS domain registration status,
q spn	string	Operator information,
qnwinfo	string	Operator network information,
ps	string	PS domain registration status,
pd p	string	PDP data service information,
sock	string	Data connection information,
The CANOBD part	, the messag	e parameters are described in the following table :
name	type	illustrate
vehicle_sleep	string	Vehicle sleep mode
		Active: The vehicle CAN bus is active and the engine is started
		Sleep: Car CAN sleep and engine shutdown
can1_state	string	CAN1 bus status
		Car Can Bus In Sleep: Car CAN bus sleep state
		Car Can Bus Active: Car CAN bus active status
		Car Can Bus Error: Car CAN bus error
		Car Can Bus Not Used: Car CAN bus is not enabled
can2_state	string	CAN2 bus status
		Same as CAN1 bus status
can_bus_ign	string	IGN signal obtained by the CAN module
		Car Ign Off: IGN off state
		Car Ign On: IGN on
		Car Ign Bus Error: CAN BUS error
		Can Ign Not Available: The parameter is invalid.
pin_ign	string	Hardware PIN pin IGN status :
		Car Ign Off: IGN off state
		Car Ign On: IGN on
engine_state	string	Engine status
		Car Engine Off: Engine off
		Car Engine On: Engine on
		Car Engine Bus Error: CAN BUS error
		Can Engine Not Available: The parameter is invalid.
ddd_dstate	st ring	DDD Download Status
		Car Remote Ddd Download Disable : Remote DDD download function is
		disabled
		Car Remote Ddd Download Enable : Remote DDD download function is
		enabled
		Car Remote Ddd Download Comm Error : Remote DDD download
		communication error
		Car Remote Ddd Download Not Support : Remote DDD download is not
		supported

th_comm_state	st ring	Communication status of driving recorder
		Car Tachograph Comm State No: No communication with the dashcam
		Car Tachograph Comm State Online: Driving records are available online
		Car Tachograph Comm State Comm Err: Car Tachograph communication error
		Car Tachograph Comm State Not Support: Communication with the driving
		recorder is not supported
kline_state	st ring	KLine communication status
		Car Kline State In Sleep: Kline is in sleep state
		Car Kline State Active: Kline is in active state
		Car Kline State Bus Error: Kline bus error
		Car Kline State Bus Not Use: kline is not enabled

In the BATT part , the message parameters are described in the following table :

name	type	Remark
mgr_enable	string	Whether battery management is enabled. 0: Disable; 1: Enable.
calibration_state	string	Battery voltage calibration status. BATT_CAL_NONE: not calibrated;
		BATT_CAL_DONE: calibrated.
detection_state	string	Battery initialization check status .
		BATT_DET_NONE: initialization is not completed;
		BATT_DET_NOT_EXIST: The battery is not in place;
		BATT_DET_EXIST_VOL: The battery is in place and normal;
		BATT_DET_EXIST_VOL_ACT: The battery is present but needs to be activated.
activate_state	string	Battery activation status.
		BATT_ACT_NONE: the activation process is not started;
		BATT_ACT_NO_NEED: No activation required;
		BATT_ACT_DOING_NOW: activating;
		BATT_ACT_FAILED: activation failed;
		BATT_ACT_SUCCESS: Activation successful.
discharge_enable	string	Battery discharge enable status. 0: Disable; 1: Enable.
discharge_voltage	string	Battery voltage when battery discharge is enabled. Unit: V.
charge_enable	string	Battery charging enable status. 0: Disable; 1: Enable.
charge_state	string	Battery charging status. CHARHING: Charging; NOT_CHARGE: Not charging.
charge_voltage	string	Battery voltage when battery charging is enabled. Unit: V.
charge_current	string	Battery charging current. Unit: ma.
recharge_state	string	Battery recharge status, that is, the mark is set after full charge and cleared
		when the battery drops to the recharge voltage.
		WAIT_RECHAGE : After fully charged, set the flag and wait for recharging;
		CLEAN_RECHAGE : Clear the mark and perform recharge.
extern_power_state	string	External power plugged in.
		INSERT : external power access;
		NOT_INSERT : external power is not connected;
extern_power_voltage	string	External voltage value, unit is V.

percent	string	Battery level, range 0-100.
temp	string	Battery NTC temperature. Unit: degrees.

For GPS , the message parameters are described in the following table :

name	type	Remark
Fireware version	string	Firmware version, such as:
		ROM SPG 5.10 (7b202e)
state	string	Working status. For example: 3D fixed
utc time	string	Utc time . The format is: YYYY-MM-DD HH:MM:SS
longitude	string	Longitude. For example: 113.947969
latitude	string	Latitude. For example: 22.573546
altitude	string	Altitude
speed	string	Speed. For example: 0.009260km/h

BLE part,

name	type	Remark
Version	String	Firmware version , such as:
		NABE5_BT_R00A02V03
boot_version	string	BOOT version , such as:
		NABE5_BT_BOOTR00A01V01

7.3.2. Core Interface

7.3.2.1. Reporting Configuration

Set the remote TCP server IP address and port, and message interval .

"modem.config":{"tcp_remote_addr":"String","tcp_remote_port":Integer,"report_interval":Integer}

Example:

}

\$ ubus call selftask modem.config '{"tcp_remote_addr":"218.17.50.142","tcp_remote_port":971,"report_interval":3}'

"rtn": "success"

7.3.2. 2. AT command transparent transmission

Send AT commands and receive response messages .

"modem.raw":{"cmd":"String","timeout":"Integer"}

Example:

\$ ubus call selftask modem.raw '{"cmd":"AT+CPIN?"}'

"rtn": "success",

"data": "\r\n+CPIN: READY\r\n\r\nOK\r\n"

7.3.2. 3. Query status information

Query the basic status of the LTE module.

```
"modem.get_state":{}
```

Example :

```
$ ubus call selftask modem.get_state
```

```
"version": "EG915UEUABR02A05M08_01.001.01.001",
"imei": "866344050762298",
"sim": "READY",
"iccid": "89860119801697983674",
"cs": "0,1",
"ps": "1",
"pdp": "1,1,1,\"10.32.148.5\"",
"sock": "0,\"TCP\",\"218.17.50.142\",971,0,2,1,0,0,\"uart1\""
```

7.3.2.4. Query positioning status

Query the GPS version and positioning status.

```
" gps.get_state ":{" firmware version ":"String"," state ":"String"}
```

Example:

```
$ ubus call selftask gps.get_state
```

```
"firmware version": "ROM SPG 5.10 (7b202e)",
"state": "2D fixed"
```

7.3.2.5. Query GPS location information

" gps . get_location "

Example:

```
$ ubus call selftask gps .get_location
```

```
"state": "2D fixed",
"utc time": "2024-01-19 07:19:08",
"longitude": "113.947976",
"latitude": "22.573527",
"altitude": "116.000000",
"speed": "0.014816km/h"
```


7.4. Testcase

7.4.1 Module Introduction

We provide a web testing service for the device, which allows you to directly open the device's test web page through the browser of the development coCPUter to preview and test the functions. This service is convenient for customers to conduct functional testing and reference code. The web service uses the python+flask solution. Specific features include:

Hardware Module	Test content
Device	View device version information and memory status
RTC	Check and set the device system time
G NSS	Check the device positioning status every three seconds
LTE	View LTE module information and transparent transmission AT command test
led	Control three LED lights to test
CAN	Use CAN module to send and receive data test
RS232/RS485	Set RS485/RS232 port baud rate and send and receive data test
Batte r y manage	Read the device's external power and backup power voltage and control the device's
	battery charging and discharging . Query the battery's charging status and current.
IO	Read device DIN and set device OUT status
ADC	Read the value of the device AIN port
IMU	Read and set the G-Sensor register value
Standby	Test system sleep and wakeup through RTC
BLE	View the basic information of the device's BLE module
Sensor	Read the device's real-time G-Sensor data
Report	Set TCP server parameters. This server is used to receive selftask report messages.

7.4.2. Page Display

The Device subpage displays some basic information about the device and dynamically refreshes the memory usage.

Home	Device	RTC	GPS	LTE	LED	CAN	RS232/RS4	185
Batter	y manage	IO	ADC	IMU	Standby	BLE	Sensor	Report
Device info:								
Model:	GV850							
Software version:	GV850_R00	A02V03						
Build time:	2024-03-20	, 03:59:	10					
Hardware version:	V1.03							
MCUID:	313538323	5325111	100280036	5				
SN:	EP84113D7	0000520	00					
Memory(kB):	Total: 10662	24 Used	: 30804 Fr	ee: <mark>43164</mark>				

The RTC subpage supports setting the system time and setting the system time to the RTC.

Hor	ne Device	RTC	GPS	LTE	LED	CAN	RS232/RS4	185
Bat	tery manage	IO	ADC	IMU	Standby	BLE	Sensor	Report
RTC:								
System tim	e: Wed Mar 2	0 03:46:3	88 UTC 20	24				
Set tim	e: 2024-02-20 01	1:00:00		Set				
Set time to RT	C:		(Set				

In the GPS subpage, click the OFF/ON button to turn the GPS power off/on. Click the "Stop refresh " button to turn the positioning information refresh on/off.

ł	lome	Device	RTC	GPS	LTE	LED	CAN	RS232/RS4	185
E	Battery	manage	ΙΟ	ADC	IMU	Standby	BLE	Sensor	Report
GPS info:									
Stop refre	sh								
Firmware ver	sion:	ROM SPG 5	. <mark>10 (7</mark> b2	02e)					
S	tate:	3D fixed							
1	UTC:	2024-03-20	03:56:2	3					
Longit	ude:	113.947975							
Latit	ude:	22.573557							
Altit	ude:	109.6999 <mark>9</mark> 7							
Sp	eed:	0.005556km	ı/h						
Po	wer:	ON							
Set Po	wer:						OFF	ON	
	\$0	GPGSV, 4, 2, 13, 16	8, 49, 010, 4	14, 18, 04, 057	, 34, 26, 29,	045, 24, 27, 80,	113, 46, 1*67	r.	
		GPGSV, 4, 2, 14, 09 GNVTG, , T, , M, O. 0			, 33, 16, 14,	085, 31, 17, 14,	242, 40, 1*62	2	
NI	IEA: \$0	GNGGA, 011014.00 GNGSA, A, 3, 03, 04), 2234. 412	208, N, 11356.			,M,−2.7,M,,	*53	
	\$0	GNGSA, A, 3, 06, 01	7,09,10,18	5, 19, 22, 30, 3	6, 39, 40, 45	, 1. 13, 0. 60, 0.			
		BPGSV, 4, 1, 15, 03 BPGSV, 4, 2, 15, 16							
								-	

The LTE subpage is used for LTE module testing. Fill in the AT command in the CMD input box and click the "Test" button to test the command return value. It is often used to set the APN parameters of the module.

	Home	Device	RTC	GPS	LTE	LED	CAN	RS232/RS4	85		
	Battery	manage	ю	ADC	IMU	Standby	BLE	Sensor	Report		
LTE info:						Test AT	cmd:				
	Version:	EG915UECA	BR03A0	3M08_01.	200.01.20	10	CM	D:			Test
	IMEI:	8676890605	64400				Respon	se:			
	SIM:	READY				Set AP	Ni				
	ICCID:	8986012180	158789	5115		JELAF					
	CS:	0,1					AP	N:			
	PS:	1				Aut	thenticatio	None None		~	
	PDP:	1,1,1,*10.14	4.24.220	-			Respon	se:		_	
	Sock:									Set	
A	Antenna:	Internal			Switch						

The LED subpage is used for LED testing. Clicking a switch can control the corresponding LED light.

Hor	me	Device	RTC	GPS	LTE	LED	CAN	RS232/RS4	185
Bat	tery mar	nage	Ю	ADC	IMU	Standby	BLE	Sensor	Report
LED ctrl:									
GPS le	d: C	FF	ON						
Net le	ed: C	FF	ON						
Power le	d: C	FF	ON						

The CAN subpage is used to test the data transmission and reception of the device CAN module.

	Home	Device	RTC	GPS	LTE	LED	CAN	RS232/RS4	85
	Battery	/ manage	IO	ADC	IMU	Standby	BLE	Sensor	Report
CAN:									
	Send data:	F5 B3 10 01 3	B F6		Send				
		example:F5	B3 10 01	1 3B F6					
	Response:								

The RS232/RS485 subpage is used for RS485/232 port configuration and data transmission and reception test.

Home	Device	RTC	GPS	LTE	LED	CAN	RS232/RS4	185
Battery i	manage	IO	ADC	IMU	Standby	BLE	Sensor	Report
RS232/RS485:								
Set baudrate:				RS232_1	RS232	_2 R	S485	
Write data:	6			RS232_1	RS232	_2 R	S485	
Read data:						RS2	32_1	
Read data:						RS2	32_2	
Read data:						R	S485	

The Battery Manager sub-page is as follows. Since reading the device battery voltage will cause the battery to discharge, no data will be read after entering the page. You can click the corresponding button to test the corresponding function.

F	lome	Device	RTC	GPS	LTE	LED	CAN	RS232/RS48	5
B	attery r	nanage	IO	ADC	IMU	Standby	BLE	Sensor	Report
Power/Batter	y info:								
Power volt	age:								
Battery volt	age:								
Cha	rge: -					Disable	Enable		
Discha	rge: -	·				Disable	Enable		
	١	Narn: start	r <mark>efresh v</mark>	vould ena	ble disch	arge! Sta	rt refresh		

After clicking the "Start refresh" button on the Battery manager subpage, the page data will be automatically refreshed as follows:

Home	Device	RTC	GPS	LTE	LED	CAN	RS232/RS48	35
Batter	y manage	IO	ADC	IMU	Standby	BLE	Sensor	Report
Power/Battery inf	lo:							
Power voltage:	4467mV							
Battery voltage:	1825mV							
Charge:	Disable				Disable	Enable		
Discharge:	Enable				Disable	Enable		
	Warn: start	refresh v	vould ena	ble disch	arge! Sto	p refresh		
					and a state of the			

The IO sub-page can be used to set the device OUT terminal and read the DIN terminal.

	Home	Device	RTC	GPS	LTE	LED	CAN	RS232/RS	485
	Battery n	nanage	IO	ADC	IMU	Standby	BLE	Sensor	Report
Set output									
PIN		PIN N	lame	S	et				
6(10	PIN)	OUT1		0	1				
11(1	6PIN)	OUT2		0	1				9 7 5 3 1
9(16	PIN)	OUT3		0	1				10 8 5 4 2
12(1	6PIN)	OUT4		0	1				
10(1	6PIN)	OUT5		0	1				
Get input:									
PIN		PIN Na	ame	Ge	t	Value		15	13 11 9 7 5 3 1 14 12 10 8 6 4 2
4(10	PIN)	DIN1		Ge	et				
2(16	PIN)	DIN2		Ge	et			15	
4(16	PIN)	DIN3		Ge	et			10	
6(16	PIN)	DIN4		Ge	et				
8(16	PIN)	DIN5		Ge	t				

The ADC subpage can be used to read the voltage value of the device's AIN terminal.

	Home		Device	RTC	GPS	LTE	LED	CAN	RS232/RS4	85
	Batter	Battery manage		IO	ADC	IMU	Standby	BLE	Sensor	Report
et ADC v	alue:									
PIN PIN Name			Descrip	tion	Get	Value				
1	1 AIN1				Analog	Input1 0	~32V	Get	0.00 mV	
3	AIN2				Analog	Input2 0	~32V	Get	0.00 mV	
5		AIN 3			Analog	Input3 0	Get	0.00 mV		
7		AIN	4		Analog	Input4 0	Get			
Г	15	13	11	9	7 5	3	1			
	16	14	12	10	8 6	4	2			
		- C					. 2 .			

The IMU subpage can be used to read and set the values of the device's G-Sensor module registers.

H	ome Device	RTC	GPS	LTE L	ED CAN	RS232	/RS485				
Ва	attery manage	IO /	ADC IN	/IU Sta	ndby BL	.E Sens	or Rep	ort			
1U:											
_											
Read	l register value										
		Bank 0									
		0x0: 0x0	0x1: 0x0	0x10: 0x0	0x11: 0x0	0x12: 0x0	0x13: 0x5	0x14: 0x3	0x15: 0x0	0x16: 0x40	0x17: 0x40
		0x18: 0x10	0x19: 0x0	0x1a: 0x1	0 0x1b: 0xe0	0x1c: 0xff	0x1d: 0x3	0x1e: 0x6	0x1f: 0xff	0x2: 0x0	0x20: 0xdd
		0x21: 0xff	0x22: 0xd	6 0x23: 0xf	0x24: 0xf4	0x25: 0x0	0x26: 0x2	0x27: 0xff	0x28: 0xfd	0x29: 0x0	0x2a: 0x0
		0x2b: 0x0	0x2c: 0x0	0x2d: 0x3	9 0x2e: 0x0	0x2f: 0x0	0x3: 0x0	0x30: 0x0	0x31: 0x0	0x32: 0x0	0x33: 0x0
		0x34: 0x4	0x35: 0x0	0x36: 0x0	0x37: 0x0	0x38: 0x0	0x39: 0x0	0x3a: 0x0	0x3b: 0x0	0x3c: 0x0	0x3d: 0x0
		0x3e: 0x0	0x3f: 0x0	0x4: 0x0	0x40: 0x0	0x41: 0x0	0x42: 0x0	0x43: 0x0	0x44: 0x0	0x45: 0x0	0x46: 0x0
		0x47: 0x0	0x48: 0x0	0x49: 0x0	0x4a: 0x0	0x4b: 0x0	0x4c: 0x33	0x4d: 0x59	0x4e: 0xe	0x4f: 0x8	0x5: 0xa4
		0x50: 0x28	0x51: 0xa	0x52: 0x8	0 0x53: 0x15	0x54: 0x31	0x55: 0x0	0x56: 0x2	0x57: 0x0	0x58: 0x10	0x59: 0x0
		0x5a: 0x0	0x5b: 0x0	0x5c: 0x0	0x5d: 0x0	0x5e: 0x0	0x5f: 0x23	0x6: 0x0	0x60: 0x0	0x61: 0x0	0x62: 0x10
		0x63: 0x0	0x64: 0x0	0x65: 0x8	0x66: 0x0	0x67: 0x0	0x68: 0x0	0x69: 0x0	0x6a: 0x0	0x6b: 0x0	0x6c: 0x0
		0x6d: 0x0	0x6e: 0x0	0x6f: 0x0	0x7: 0x0	0x70: 0x0	0x71: 0x0	0x72: 0x0	0x73: 0x0	0x74: 0x0	0x75: 0xdd
		0x76: 0x0	0x77: 0x0	0x78: 0x0	0x79: 0x0	0x7a: 0x0	0x7b: 0x0	0x7c: 0x0	0x7d: 0x0	0x7e: 0x0	0x7f: 0x0
		0x8: 0x0	0x9: 0x0	0xa: 0x0	0xb: 0xb1	0xc: 0x0	0xd: 0x0	0xe: 0x0	0xf: 0x0		
		Bank 4									
		0x40: 0xa2	0x41: 0x8	5 0x42: 0x5	1 0x43: 0x64	0x44: 0x8b	0x45: 0x5c	0x46: 0x45	0x47: 0x5b	0x48: 0x0	0x49: 0x0
		0x4a: 0xd	0x4b: 0xd	0x4c: 0xd	0x4d: 0x0	0x4e: 0x0	0x4f: 0x0	0x50: 0x0	0x51: 0x0	0x52: 0x18	0x53: 0x0
		0x54: 0x0	0x55: 0x0	0x56: 0x0	0x57: 0x0	0x58: 0x0	0x59: 0x0	0x5a: 0x0	0x5b: 0x0	0x5c: 0x0	0x5d: 0x0
		0x5e: 0x0	0x5f: 0x0	0x60: 0x0	0x61: 0x0	0x62: 0x0	0x63: 0x0	0x64: 0x0	0x65: 0x0	0x66: 0x0	0x67: 0x0
		0x68: 0x0	0x69: 0x0	0x6a: 0x0	0x6b: 0x0	0x6c: 0x0	0x6d: 0x0	0x6e: 0x0	0x6f: 0x0	0x70: 0x0	0x71: 0x0
		0x72: 0x0	0x73: 0x0	0x74: 0x0	0x75: 0xdd	0x76: 0x4	0x77: 0x0	0x78: 0x0	0x79: 0x0	0x7a: 0x0	0x7b: 0x0
		0x7c: 0x0	0x7d: 0x0	0x7e: 0x0	0x7f: 0x0						· · · · · · · ·
Write reg	jiter(Bank 0)	Address: 0	(Value	: 0x					Write
	iter(Bank 4)	Address: 0)			Value	. 0					Write

The Standby subpage is used to test the device's low power mode wake-up function. The page can be configured with a specified duration and a specified time point to wake the device from low power mode.

Home	Device	Device RTC		LTE	LED	CAN	RS232/RS4	85
Battery	manage	IO	ADC	IMU	Standby	BLE	Sensor	Report
RTC standby:								
System time:	Wed Mar	20 03:38	:32 UTC 2	024				
Standby now. Wake up with period:	60			s Sta	art			
Standby now. Wake up with time:	HH:MM:SS			Sta	art			

The BLE subpage is used to read the basic information of the BLE module.

	Home	Home Device		C GPS LTE		LED CAN		RS232/RS4	185	
	Battery n	nanage	ю	ADC	IMU	Standby	BLE	Sensor	Report	
BLE:										
	Query BLE fi	rmwa <mark>re ve</mark>	01.01 Get							
	Query BLE Ha	rsion:	01.01	t						
	Query Devic	e MAC add	dress:	7805413/	t					
	Query BLE boo	rsion:	GV850_B	I_BOOTR	00A01V01		Ge	t		
	Query BLE App	rsion:	GV <mark>850_</mark> B	F_R00A01	V01		Get			
	Quer	info:	Type:Blue	NRG-LP	Version:01		Get			
	MCU	wa <mark>king</mark> up	BLE:					Se	t	
	BLE	waking up					Se	t		

The Sensor subpage is used to read the value of the G-Sensor gravity acceleration XYZ and demonstrate the real-time angle of the device.

	Home	Device	RTC	GPS	LTE	LED	CAN	RS232/RS4	185
	Battery r	manage	IO	ADC	IMU	Standby	BLE	Sensor	Report
Sensor:									
Chi	ip name:	icm42600							
Acc	cel(LSB):	-690, -147	, 3997						
Acce	el(m/s²):	-1.652, -0.	352, 9.57	7					
		X Y	Z						
					ļ		25 m/s ² 20 m/s ² 15 m/s ² 5 m/s ² 0 m/s ² -5 m/s ² -10 m/s ² -15 m/s ² -20 m/s ² -25 m/s ²		onds window, 200ms interval

The Report subpage is used to set the TCP server parameters. The server is used for receiving the device's active report messages.

Hor	me	Device	RTC	GPS	LTE	LED	CAN	RS232/RS4	85
Batt	tery ma	anage	Ю	ADC	IMU	Standby	BLE	Sensor	Report
Set config:									
U	JRL:								
P	ort:	D							
Report inter	val:	D			5				
				Set					