
GV850 Software Development Guide

GV850 Software Development Guide
Version: 1.02

GV850 Software Development Guide

Document Title GV850 Software Development Guide

Version 1.02

Date 2024-08-28

Status Released

General Notes

Queclink offers this information as a service to its customers, to support application and engineering efforts that use the
products designed by Queclink. The information provided is based upon requirements specifically provided to Queclink by
the customers. Queclink has not undertaken any independent search for additional relevant information, including any
information that may be in the customer’s possession. Furthermore, system validation of this product designed by
Queclink within a larger electronic system remains the responsibility of the customer or the customer’s system integrator.
All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information which is the property of Queclink. Copying of this document,
distribution to others or using or communication of the contents thereof is forbidden without express authority. Offenders
are liable to the payment of damages. All rights are reserved in the event of a patent grant or the registration of a utility
model or design. All specifications supplied herein are subject to change without notice at any time.

Copyright © Queclink Wireless Solutions Co., Ltd. 2023

GV850 Software Development Guide

Contents

0. Revision History ... 1
1. Overview.. 2
2. Platform Development ..6

2.1. Device Tree ...6
2.2. Boot Chain ..6
2.3. Compilation Method ...7
2.4. Programming ...8

USB OTG...8
OTA .. 9

3. Application Development ..10
3.1. Programming Languages ... 10
3.2. Queclink Software Package Compilation ..10
3.3. Debugging Methods .. 10

3.3.1. UART Console Debugging .. 11
3.3.2. USB Port Debugging ... 11
3.3.3. Debugging Tools .. 17
3.3.4. Terminal Login ... 17
3.3.5. Internet Access to the Internet .. 18
3.3.6. Modify the default IPv4 address of the USB network ..21

3.4. Custom Packages .. 21
3.5. Device logs ...22

3.5.1. System log ...22
3.5.2.Application log ..23

4. Interface and Driver ...24
4.1. LED..24
4.2. LTE ...24

4.2.1 UART Modem..25
4.2.2 Ethernet Adapter ..30

4.3. GNSS .. 33
4.4. CAN Module ..37

4.4.1 GV80 CAN OBD Module ... 37
4.4.2 GV8551 Raw CAN FD... 40

4.5. G-sensor ... 44
4.6. BLE ...48
4.7. RS232/RS485 ...50
4.8. GPIO&ADC&1-WIRE ..52
4.9. Watchdog...56
4.10. RTC... 57
4.11. Power&Battery ... 57

4.11.1. 获取主电电压 Get Main power voltage ..59
4.11.2. 获取电池电压 Get battery voltage.. 59
4.11.3. 电池充电 Battery Charging ...59
4.11.4. 读取电池温度 Reading battery temperature .. 60

GV850 Software Development Guide

4.12. 硬件版本 Hardware version ... 61
5. System Sleep ..63

5.1. ST 官方描述 ST official description... 63
5.2. 设备唤醒源 Device wakeup source ..66
5.3. RTC Wake-up..70
5.4. UART Wake-up .. 71
6.3 USB Wake-up.. 72
6.4 G-Sensor Wake-up..73
6.5 IGN Wake-up...73
6.6 POWER Wake-up... 74
6.7 IO Input Wake-up .. 74
6.8 Button Wake-up ... 74
6.9 CAN OBD module Wake-up .. 75

6. Example of Codes ...76
6.1. utils_info ..76
6.2. example_modem_at ..76
6.3. example_formula_can .. 77
6.4. example_gsensor ... 78
6.5. example_ble ...79
6.6. example_input_intr ..81
6.7. gpiosnoop.. 81

7. Queclink Software Modules Queclink Software Modules ..83
7.1. Canobd..83

7.1.1. Introduction to CAN Module ..83
7.1.2. CAN module automotive parameter table ..85
7.1.3. CANOBD Core Interface ...88

7.2. Batterymgr ...101
7.2.1. Service Introduction .. 101
7.2.2. Batterymgr management logic ... 101
7.2.3. Batterymgr Core Interface ...107

7.3. Selftask .. 110
7.3.1. Reporting messages ..111
7.3.2. Core Interface .. 116

7.4. Testcase .. 118
7.4.1 Module Introduction .. 118
7.4.2. Page Display ...118

GV850 Software Development Guide

1

0. Revision History

Version Date Author Description of Change

1.00 2023-09-25 Alex Liao Initial

1.01 2023-11-21 Alex Liao Added more information to make the file more complete.

1.02 2024-08-22
Mundo ，

Alex Liao

1. In accordance with the modifications in hardware version V1.04,
update the device's IO resource content.

A new DDR power control pin with a latching function has been
added.

A new internal power supply enable latching function has been
introduced, with the data pin remaining the same.

The LTE module has been updated with a new USB network card
function. Details can be found in the "LTE" section.

2. Added more description on the application development and
debugging process

3. Added an explanation of the GV851 CAN FD module to this
document. Refer to the "Raw CAN FD" section for details.

4. A new section "Queclink Software Modules" has been added to
the document, along with introductions to the "CANOBD,"
"Batterymgr," "selftask," and "Testcase" software modules.

5. Optimized the module circuit diagrams in the "Interface and
Driver" chapter, removing connections and information that are not
related to the corresponding modules.

GV850 Software Development Guide

2

1. Overview

CPU STM32MP133A

RAM 128MB, DDR3 or above

FLASH Memory 128MB SPI or above

Status LEDs 1 x Power, 1 x CEL, 1 x GNSS LED, 1 x CAN/Tachograph

Modem
Support Cat 1
LTE-FDD: B1/B3/B5/B7/B8/B20/B28
GSM: B2/B3/B5/B8

SIM 1 x SIM card slot or eSIM

Cellular Antenna Internal or external

GNSS u-box all-in-one GNSS receiver, support GPS, Glonass, Galileo, Beidou

GNSS Antenna Internal or external

CAN

CAN1H/CAN1L, support reading CAN bus data in heavy (J1939/FMS) and light
vehicle
CAN2H/CAN2L, support reading and download tachograph data, support reading
CAN data in J1708 and OBDII

K-Line Connect D8 of tachograph for live data reading

RS232 or RS485
2 x RS232, 300-115200 baud rate
1 x RS485, 300-115200 baud rate/Half Duplex (2 wires)

I/O

1 x positive trigger input for ignition detection
5 x negative trigger inputs
4 x analog input (0-32V)
5 x digital output, open drain, 150mA max drive current
3 x 5V outputs for external accessories
1 x DC 3.3V output for temperature sensor

1-Wire Interface Support 1-wire temperature sensor and iButton driver ID

G-sensor 6-axis motion, motion detection, harsh driving detection, shock detection

BLE BLE5.2

BLE Antenna Internal

Battery Li-Polymer, 1100mAh

Reset button Reset button to reset CAN

Type-C USB Used for configuration, upgrade and debug

Sleep Current < 10mA

GV850 Software Development Guide

3

Firmware/configuration

Operating system Linux OS, Kernel 5.15.67

Power

Connector Pin connector

Input voltage range 8 – 32 VDC, reverse polarity protection; surge protection >31 VDC 10us max

Power consumption 5W (average)

Physical Specification

Dimensions 123*80*21mm (L*W*H)

Weight 150g

Mounting options Flat surface placement

Operating Environment

Operating temperature -20 °C to 60 °C

Operating humidity 10% to 90% RH non-condensing

Ingress Protection Rating IP30

The hardware block diagram is as following:

GV850 Software Development Guide

4

The software block diagram is as follows:

GV850 Software Development Guide

5

Two construction methods, buildroot and yocto, and corresponding SDK source codes, are provided. The positioning from
Linux of these two construction methods differs (though both are commonly used in embedded systems, but there are
differences in efficiency and usage methods):

 Buildroot, which builds a more streamlined and simple system and is suitable for devices with limited hardware
resources (mainly flash);

 Yocto, which builds a system with rich features and supports more complete hardware, including UI, audio and video
software stacks, requiring a larger flash size.

GV850 Software Development Guide

6

2. Platform Development

At present, source codes for building systems based on buildroot are provided, which can build and package complete
system images.

2.1. Device Tree

The first step in developing STM32MP1 platform devices is to adapt a device tree based on its hardware. Moreover,
because the device tree is used in each module of bootchain, it is a complex and cumbersome operation to ensure that
each module obtains the correct device tree during compilation. Therefore, ST has provided the STM32CubeMX tool to
provide visualization, assistance, and configuration wizards that can automatically generate the device tree required by
each module.
The provided buildroot source codes already contain the adapted devicetree.

2.2. Boot Chain

The STM32MP133 platform is based on the ARM Cortex-A7 architecture, and the boot process is similar to other ARM
architectures. It is mainly divided into the following stages:

ROM code
FSBL (First stage bootloader) TF-A
SSBL (Second-stage bootloader), u-boot

Please search “boot chain” in following link to get more information.
 https://wiki.stmicroelectronics.cn/stm32CPU/wiki/Main_Page

https://wiki.stmicroelectronics.cn/stm32mpu/wiki/Main_Page

GV850 Software Development Guide

7

After understanding the startup process of STM32 ARM, it’s known that the actual module relationship is:

After initially adjusting the device tree according to the actual hardware configuration, copy the device tree to
the source code directory of the above-mentioned modules for compilation, flashing, and running. If any errors
occur, refer to the error messages and resolve them by consulting the "STM32MP135x_bringup" documentation.

2.3. Compilation Method

To use the Buildroot, there must be a Linux distribution installed on the workstation. Any reasonably recent Linux
distribution (Ubuntu, Debian, Fedora, Redhat, OpenSuse, etc.) will work fine. Then, a small set of packages needs to be
installed as described in the System Requirements section of Buildroot Manual.
For Debian/Ubuntu distributions, use the following command to install the necessary packages:
$ sudo apt-get install -y debianutils sed make binutils build-essential gcc g++ \

bash patch gzip bzip2 perl tar cpio unzip rsync file bc git \
wget python3 libssl-dev libncurses-dev

After finishing installation, extract source tarball that is provided:
$ tar zxvf GV850_buildroot_dd981da1.tar.gz
Go to the Buildroot directory:
$ cd GV850_buildroot_dd981da1/buildroot/
And then, configure the system you want to build by using the defconfigs provided in this BR2_EXTERNAL tree.
$ make BR2_EXTERNAL=../buildroot-external-st st_stm32mp133a_queclink_GV850CEU_defconfig
For model GV851:
$ make BR2_EXTERNAL=../buildroot-external-st st_stm32mp133a_queclink_GV851CEU_defconfig

There are two pieces of information are provided:
1. The path to BR2_EXTERNAL tree, which is provided side-by-side to the Buildroot repository.
2. The name of the Buildroot configuration.

If there is the need to further customize the Buildroot configuration, please run ‘make menuconfig’, but for the first
build, it is recommended to keep the configuration unchanged so that it can be verified that everything is working.

Start the build:
$ make V=s

It might take between 30 and 60 minutes depending on the configuration that is chosen and how powerful the
machine is. All software packages for building the entire Linux system for the STM32MP1 platform (e.g. cross-compilation
toolchain, firmware, bootloader, Linux kernel, root filesystem) are already included, no downloading is needed unless
default configuration is customized.

Buildroot might need to be authorized to root (or sudo) in order to compile some packages (related to Python 3)
properly. If some permission failures are met, please retry:
$ sudo make V=s

When the building is done, it will output images in the directory below, including u-boot, kernel, rootfs binary files.
$ cd output/images

Following files in this directory are necessary for flashing, please copy and prepare for flashing.

DELL
增加GV851编译说明

GV850 Software Development Guide

8

├── fip.bin
├── flash.tsv
├── metadata.bin
├── rootfs.ubi
└── tf-a-stm32mp133a-gv850ceu-mx.stm32

2.4. Programming

The device supports both USB OTG programming and OTA firmware updating.

USB OTG

After successfully building with Buildroot, the complete files required for programming can be obtained.

├── fip.bin // FIP
├── flash.tsv // Program partitions configuration table
├── metadata.bin
├── rootfs.ubi // Including kernel and file system rootfs
└── tf-a-stm32mp133a-gv850ceu-mx.stm32 // TF-A

The device first enters DFU mode. And then use the STM32CubeProgrammer tool to erase and programm the device. The
method and steps are as follows:
1. Use the USB+UART 2-in-1 cable provided along with the device, open the COM device on a PC using the UART tool, and
the baud rate is 115200bps;
2. Power on the device, the COM starts printing the startup log, and then quickly press any key on the keyboard. The
startup process will be interrupted and it requires to enter the u-Boot command. Then, enter the following command to
enter DFU mode;
STM32MP> stm32prog usb 0

3. Connect the USB of the cable to the PC, click the right button of the mouse to click refresh, after automatically scanning
and finding the device that has entered DFU mode, and then click "Connect"
4. Select "Open file" to load the flash. tsv file from the released firmware, and note that select the correct path for
"Browse";
3. Click "Download" to start programming. After successful programming, power off the device, unplug and reinsert the
USB Type-C cable, power on the device, and the device enters the boot process.

GV850 Software Development Guide

9

OTA

Still under development.

GV850 Software Development Guide

10

3. Application Development

3.1. Programming Languages

The current GV850 and GV851 device support the development languages C/C++/Python. The provided Buildroot
SDK source package includes a cross-toolchain, which can compile C/C++ source code and link it into executable
files that can run on the ARM platform.

The device currently only supports Python 3, and comes pre-installed with the pip tool. After connecting to the
Internet, you are free to download and install various Python modules. This greatly enhances the efficiency of
embedded software development.

3.2. Queclink Software Package Compilation

In order to facilitate developers to familiarize themselves with the platform, example code and software packages of
testing programs are provided. Please Compile it using the following command:
$ make queclink-dirclean
$ make queclink

In the output/build/queclink-X.X/modules/ directory, you will find the target files generated from the compilation.
These target files are also copied to the corresponding output/target/ directory. During the firmware compilation
process, they are collectively packaged into the root file system. Taking the example_ble tool as an example, the
executable file path is as follows:

./output/build/queclink-1.0/tools/example_ble

./output/target/usr/sbin/example_ble

3.3. Debugging Methods

Once an executable file is compiled, it needs to be copied to the device for running and debugging. This process is both
frequent and crucial. We offer very convenient debugging methods, namely UART Console and USB Ethernet/RNDIS Net
SSH.

The product package includes a 2-in-1 cable, with one end being a USB Type-C connector that connects to the USB
port of the GV850 device; the other end consists of two USB Type-A connectors. One of the USB Type-A connectors,
marked with "DATA_CABLE_M," has a built-in USB-to-Serial chip, and the other USB Type-A connector serves as a
general-purpose USB port. In the subsequent content, USB Type-A #1 is the USB-to-Serial USB connector, while USB
Type-A #2 is the USB Ethernet/RNDIS USB connector.

GV850 Software Development Guide

11

3.3.1. UART Console Debugging

UART Console debugging is essential during the development of embedded devices. It is the only way to check the device
status when the system experiences severe failures. The UART Console port is often used for configuring the system,
viewing logs, entering commands, and transferring files.

The GV850 device also offers this debugging method. Initially, install the appropriate USB-to-Serial port driver on the
development coCPUter. Subsequently, connect the Type-C end of the USB cable that comes with the GV850 device to the
GV850, and connect the USB Type-A #1 connector to the development coCPUter. Once the connection is established and
the device is powered on, if the drivers are correctly installed and the connections are secure, a COM port will be visible in
the Windows Device Manager of the development coCPUter, or a /dev/ttyUSBx device node will be present in the Linux
environment.

Use a command terminal tool, such as putty, to establish a connection with the UART Console port, setting the parameters
to a baud rate of 115200, with 1 start bit, 8 bits of data, 1 stop bit, and no parity bit. Upon successful connection,
authenticate using the username "root" and the password "root".

The USB-to-Serial driver file for Windows is named "CH341SerSetup.zip".

3.3.2. USB Port Debugging

The UART Console port allows for one connection, and the speed of file transfer is comparatively slow. The GV850 device is
equipped with the USB Ethernet/RNDIS virtual network card capability, enabling SSH connections to the device for
debugging purposes.

Initially, install the USB Ethernet/RNDIS virtual network card driver on the coCPUter to enable it to recognize the GV850
device's USB port as a virtual network card. Next, connect the Type-C end of the USB cable that comes with the GV850
device to the device itself, and connect the USB Type-A #2 connector to the development coCPUter. Provided that the
driver installation is successful and the connection is secure, a USB Ethernet adapter will be visible in the Windows Device
Manager, and a usbx network node will be present in the Linux environment.

The steps for installing the USB Ethernet/RNDIS virtual network card driver on the development coCPUter are as
follows:

GV850 Software Development Guide

12

1 Step: Power up the device and connect the Type-C end of the USB cable. Initially, do not attach the USB Type-A #1
and USB Type-A #2 connectors to the coCPUter.

2 Step: Open the Device Manager on your coCPUter, and then connect the USB Type-A #2 connector to the
coCPUter. Look for the new device that has been added in the Device Manager. The USB Type-A #2 connector may
be recognized as a COM port, it might be identified as a different driver, or it could appear as an unrecognized
device. If you are unable to recognize which device is the newly connected one, move on to Step 3.

Upon connecting the USB Type-A #2 connector, a new COM7 interface has been added in the coCPUter, as depicted
in the figure below.

3 Step: Remove the USB Type-A #2 connector from the coCPUter and examine the Device Manager. Find out
which device has been removed. If you are unable to identify which device has been removed, perform Step 2 again.
If there is no new or missing device in the Device Manager during Steps 2 and 3, it is necessary to verify whether the
coCPUter's USB ports are working correctly and to test with another USB port on the coCPUter. After you have
determined the device node created by the USB Type-A #2 connector on the coCPUter, move on to Step 4.

GV850 Software Development Guide

13

4 Step: Examine the Vendor ID (VID) and Product ID (PID) of the device to confirm that the device node originated
from the GV850/1 device. The VID for the USB Type-A #2 connector is 0525, and the PID is A4A2. The way to check is
illustrated in the figure below:

5 Step: Right-click the device and choose "Update Driver Software." Continue by selecting "Let me pick from a list of
available drivers on my coCPUter" and then "Browse." Select the folder where the driver files are located. Click "Next"
to initiate the driver update process.

GV850 Software Development Guide

14

The page indicating successful driver update is as follows.

GV850 Software Development Guide

15

6 Step: Within the Device Manager page, under the Ethernet adapters category, check whether the device is
identified as a USB Ethernet/RNDIS Gadget# device. If yes, this indicates that the driver installation has been
successful; if not, the installation has failed, and you may attempt the process again. If subsequent attempts to install
the driver are unsuccessful, please seek help from technical support.

7 Step: Open the Ethernet adapter configuration page, and you will find a USB Ethernet/RNDIS Gadget adapter. On
this page, you can adjust the settings for the adapter. As depicted in the figure below:

GV850 Software Development Guide

16

8 Step: Verify the network connectivity between the coCPUter and the device. Use the ping tool to do the test, as
illustrated in the figure below:

GV850 Software Development Guide

17

The USB virtual network interface in the GV850 device has a default IPv4 address of 192.168.1.1, with a subnet mask of
255.255.255.0. The coCPUter must configure an address for the new USB Ethernet adapter, ensuring that the IPv4 address
is within the same subnet as the device. After completing this step, the development coCPUter and the device will be able
to communicate via the network. An example of how to set the address on the development coCPUter is provided below:
IPv4 Address 192.168.1.100，Subnet 255.255.255.0
On the coCPUter, use the Ping tool to test whether the network configuration is correct.

$ ping 192.168.1.1
After the coCPUter and the GV850 device communicate properly, you can use a SSH tool to log in to the device's backend
for debugging. The network topology is shown below.

SSH Login Success Example:

The USB Ethernet/RNDIS driver file for Windows is named "mod-rndis-driver-windows.zip".

3.3.3. Debugging Tools

The GV850 device supports the rz and sz commands and file transfer protocols, such as ZMODEM/YMODEM/XMODEM ,
enabling the upload and download of files to the device via tools.

Additionally, the GV850 device supports the SCP and SSH commands, and it initiates the SSHD service at startup, facilitating
connections from multiple clients.

3.3.4. Terminal Login

The default username/password for the Linux system of the GV850 is: root/root.

GV850 Software Development Guide

18

3.3.5. Internet Access to the Internet

There are two ways to access the Internet on the device: via LTE Cellular or USB Ethernet/RNDIS Gadget.

3.3.5.1. LTE Cellular Network

For details of how to use cellular to access the Internet, refer to the "LTE" section.

3.3.5.2. USB Ethernet/RNDIS Gadget Network

The previous chapters covered using the device's USB port to allow the coCPUter to connect to the device via a
TCP/IP network for backend debugging. Based on this, further configuring the network settings of the coCPUter and
the GV850 device can enable the GV850 to access the Internet through the USB port connected to the development
coCPUter. The prerequisite is that the development coCPUter must be able to access the Internet. The steps are as
follows:

Initially, connect the coCPUter to the Internet. Subsequently, connect the USB Type-A #2 connector to the coCPUter.
Attach the Typc-C end to the GV850 device and power on the device.

Follow the configuration method described in the "USB Debugging" section to properly network the device with the
coCPUter, ensuring that the GV850 device is reachable via Ping from the developer's coCPUter. Then, share the
network adapter that provides Internet access on the coCPUter with the USB Ethernet/RNDIS Gadget Adapter
generated by the GV850. For the topology diagram, refer to the "USB Debugging" section.

Example:
Taking a Windows 7 PC as an example,

1 Step: In Windows, sharing the local Internet connection from the adapter to the USB Ethernet adapter that is
created by the GV850.

GV850 Software Development Guide

19

2 Step: On the Windows system, check the IP address of the USB Ethernet adapter that has been created by the
GV850 device.

GV850 Software Development Guide

20

3 Step: according to the information obtained in Step 2 to configure the IPv4 address and default gateway on the
GV850 device.

In our example, the network segment is 192.168.137.0/24, so configure the IPv4 address of the GV850 device to
192.168.137.10. The command is as follows:
$ ifconfig usb0 192.168.137.10 netmask 255.255.255.0
The default gateway should be configured as 192.168.137.1:
$ ip route add default via 192.168.137.1

4 Step: Configure the DNS server settings on the GV850 .

$ vi /etc/resolv.conf

5 Step: In the GV850 , test if the Internet network services are normal.

6 Step: If the network is working properly on the GV850, you can then use pip to install Python packages.

GV850 Software Development Guide

21

Caution: After the device is rebooted, the network configurations within the device will be lost. To access the Internet,
you will need to repeat the aforementioned steps.

3.3.6. Modify the default IPv4 address of the USB network

When we need to modify the default USB network address of the device, we must log in to the device's backend and
modify the DEFAULT_IP_ADDR variable in the /etc/init.d/S40network file. After modifying the file, run the sync
command to write the changes to the flash memory. Then restart the device or run the following command:

$/etc/init.d/S40network restart
This is helpful for debugging multiple devices on one coCPUter at the same time.

3.4. Custom Packages

Adding a new package to the Buildroot compilation suite is quite straightforward; simply follow the official
instructions provided by Buildroot. Referring to the Queclink software package, here is a brief description of the
process:

Package Path:
package/queclink

Package Files:
package/queclink/Config.in
package/queclink/queclink.mk
package/linux-tracker-app -> ../../queclink_custom/linux-tracker-app

Config.in is used by the menuconfig tool to configure and manage software packages; queclink.mk is used to
compile software packages. The Config.in of a custom package needs to be referenced in the upper-level Config.in.

The source code path needs to be specified in the queclink.mk file. queclink.mk specifies the package source code as
package/linux-tracker-app. package/linux-tracker-app is a soft link file that connects to the real source code path.
The content of Config.in, the previous level of queclink, is as follows:

$ cat package/Config.in
menu "Queclink custom Packages"

GV850 Software Development Guide

22

source "package/queclink/Config.in"
endmenu

After the above configuration file, you can use make menuconfig to select the custom software package and then
compile it.

$ make queclink-rebuild

3.5. Device logs

Logs are an essential part of development and debugging. The device environment provides two log systems, system
logs and application logs. Currently, logs are stored in RAM memory files and cannot be saved permanently. They will
be lost after the device is restarted. Automatic cycle overwriting is supported.

3.5.1. System log

The device has integrated the syslogd log service to collect system logs. It collects logs generated by the kernel and
various system services. Logs are stored in the RAM file /var/log/messages and do not support persistent storage.
They will be lost after the device is restarted.

Check the logs,
$ dmesg
[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Linux version 5.15.67 (root@31f3ee1efbea) (arm-linux-gcc.br_real (Buildroot
toolchains.bootlin.com-2021.11-1) 10.3.0, GNU ld (GNU Binutils) 2.36.1) #1 SMP PREEMPT Tue Mar 19 17:43:45 CST
2024
[0.000000] CPU: ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d
[0.000000] CPU: div instructions available: patching division code
[0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
[0.000000] OF: fdt: Machine model: STMicroelectronics custom STM32CubeMX board -
openstlinux-5.15-yocto-kirkstone-mp1-v22.11.23

You can also use commands such as cat and tail to view:
$ tail -f /var/log/messages
Jan 1 00:00:43 Queclink-GV850 kern.err kernel: [34.954559] usb 2-2: device descriptor read/64, error -62
Jan 1 00:00:44 Queclink-GV850 kern.info kernel: [35.284660] usb 2-2: new low-speed USB device number 4
using ohci-platform
Jan 1 00:00:44 Queclink-GV850 kern.err kernel: [35.504566] usb 2-2: device descriptor read/64, error -62

GV850 Software Development Guide

23

Jan 1 00:00:44 Queclink-GV850 kern.err kernel: [35.834551] usb 2-2: device descriptor read/64, error -62
Jan 1 00:00:44 Queclink-GV850 kern.info kernel: [35.954691] usb usb2-port2: attempt power cycle

3.5.2.Application log

Currently, the Queclink application software uses the zlog log system. It is used to collect logs generated by the
Queclink application. The logs are stored in the RAM file /var/log/ubus_app.log and do not support persistent
storage. They will be lost after the device is restarted.
$ tail -f /var/log/ubus_app.log
2000-01-01 01:34:28 187 <WARN> <batterymgr> get real percent:98.4615 from 4144 -- batt_order_tab_lookup()
batt_per.c:78
2000-01-01 01:34:32 187 <WARN> <batterymgr> get real percent:98.4615 from 4144 -- batt_order_tab_lookup()
batt_per.c:78
2000-01-01 01:34:36 187 <WARN> <batterymgr> get real percent:98.4615 from 4144 -- batt_order_tab_lookup()
batt_per.c:78
2000-01-01 01:34:40 187 <WARN> <batterymgr> get real percent:98.4615 from 4144 -- batt_order_tab_lookup()
batt_per.c:78
2000-01-01 01:34:44 187 <WARN> <batterymgr> get real percent:98.4615 from 4144 -- batt_order_tab_lookup()
batt_per.c:78

You can modify the log configuration file and then trigger a reload of the log configuration to dynamically change the log
settings. The command is as follows:

The command format is ubus call module name set_logconf '{"file":"log configuration file"}'
Example:
$ ubus call canobd set_logconf '{"file":"/etc/ubus_app_log_debug.conf"}'

Configuration file contents:
$ cat /etc/ubus_app_log_debug.conf
[formats]

default_format = "%d(%F %T) %p <%V> %m -- %U() %f:%L%n"

[rules]

*.DEBUG "/var/log/ubus_app.log", 1MB*1; default_format

GV850 Software Development Guide

24

4. Interface and Driver

4.1. LED

There are 3 LEDs, which are controlled by GPIO.

Hardware resource list:

Pin Name LED Name Description

PG11 Power supply status LED

On, PG11 output high, read led
$ gpioset 6 11=1
Off, PG11 output low
$ gpioset 6 11=0

PA8 GPS signal LED

On, PA8 output high, blue led
$ gpioset 0 8=1
Off, PA8 output low
$ gpioset 0 8=0

PE6 Network signal LED

On, PE6 output high, green led
$ gpioset 4 6=1
Off, PE6 output low
$ gpioset 4 6=0

4.2. LTE

Depending on the model, the module model is EG915U-EC or EG915Q-NA. Regardless of the module model, it
supports two usage modes: network card mode and UART module mode. The hardware block diagram is as follows:

Hardware resource list:
Pin Name Description Remarks

GV850 Software Development Guide

25

PA15 LTE module power control 0:Power off
1:Power on

PF5 LTE module power on/off control pin 3s low pulse power-on state reverses
PB7 LTE module wake-up CPU pin 0:Wake up CPU level

1: Normal operating level
PE14 CPU wakes up LTE module pin 0: wake up the LTE module level

1: Normal operating level
USART3 LTE module communicates with CPU UART Device node: /dev/ttySTM3

Baud rate: 115200
Start bit: 1 bit
Data bit: 8 bits
Stop bit: 1 bit
No checksum

USB1 LTE module communicates with CPU via
USB port

Device node: /dev/ttyUSBx

PA4 LTE module enables USB function on VBUS
pin

0: Disable 5V boost, module VBUS voltage 0V
1: Turn on 5V boost, module VBUS voltage 5V

PE2 LTE module internal and external antenna
switching pin

0: Connect to an external antenna
1: Connect to the built-in antenna

PE6 LTE module indicator, green 0: Turn off the light
1: Turn on the light

If you are running the Queclink pre-installed software, close the selftask program before manual testing to avoid
serial port resource conflicts.
$ /etc/init.d/S99selftask stop
$

4.2.1 UART Modem

When work as a UART module, use USART3, corresponding to the device node /dev/ttySTM3.

Reference testing commands as follows:
Set the baud rate to 115200bps and remove the incrnl attribute to avoid automatically converting input characters \r to \n.
Remove the isig icanon echo echoe attribute to avoid output causing incorrect module command format +CME ERROR: 58
error.
$ stty -F /dev/ttySTM3 ispeed 115200 ospeed 115200 cs8 -icrnl -isig -icanon -echo -echoe

Receive module uart output,
$ cat /dev/ttySTM3 &

PA15 module power supply enable output high,
$ gpioset 0 15=1

PF5 module startup signal,
$ gpioset 5 5=1
$ sleep 3

GV850 Software Development Guide

26

$ gpioset 5 5=0

Receive the module startup URC message,
RDY

Turn off echo，
$ echo "ATE0" > /dev/ttySTM3

Internal antenna or external antenna can be selected, through GPIO PE2 pin. The example is as follows:
Select internal antenna：
$ gpioset 4 2=1
Select external antenna：
$ gpioset 4 2=0

The EG915U-EC and EG915Q-NA modules have Pin to Pin compatibility for wake-up and sleep pins, but the test commands
are different.

WAKE_ LTE (DTR pin PE14) controls the sleep of the module, high level allows sleep, and low level wakes up the
module,
$ gpioset 4 14=0

EG915U-EC modem, Query the DTR pin status via command, if it is 0, sleep is not allowed,
$ echo "AT+QGPIOR=25" > /dev/ttySTM3
+QGPIOR: 0

OK
The EG915Q-NA module does not respond to AT commands when in sleep mode, but it can respond to AT
commands when not in sleep mode. The CPU determines whether the module should sleep by controlling the
wake-up pin of the LTE module, which allows for testing the functionality of this pin. The wake-up test command is
as follows.

$ gpioset 0 4=0
$ echo "AT+QSCLK=1" > /dev/ttySTM3
$ sleep 4
$ echo "AT" > /dev/ttySTM3

OK

If the module can reply, it means the module has not entered sleep mode.

DTR pin output high level,
$ gpioset 4 14=1

EG915U-EC modem, Query the DTR pin status via command, if it is 1, sleep is allowed
$ echo "AT+QGPIOR=25" > /dev/ttySTM3
+QGPIOR: 1

GV850 Software Development Guide

27

OK

The EG915Q-NA module enters sleep mode and no longer responds to commands. The sleep test command is as
follows.

$ gpioset 0 4=0
$ echo "AT+QSCLK=1" > /dev/ttySTM3
$ sleep 4
$ echo "AT" > /dev/ttySTM3

(No response with AT cmd.)

If the module can reply, it means the module has not entered sleep mode.

Send the AT+QSCLK=1 command to enable sleep function,
$ echo "AT+QSCLK=1" > /dev/ttySTM3
OK

Sending any AT command will wake up the module, but at the appropriate time, it will enter sleep again unless the DTR pin
output is at low level or the sleep function is turned off using the AT+QSCLK=0 command.
The module can notify the CPU through the level change of the WAKE_MCU (RI pin PB7). Due to the rapid level change, it is
not possible to accurately obtain it using gpioget. Therefore, the example_input_intr tool can be used for monitoring it.

For example, using command to turn off the module,
$ echo "AT+QPOWD" > /dev/ttySTM3
POWERED DOWN

Monitoring receives GPIO level change events,
$ example_input_intr &

type:1, code:261, value:0
type:1, code:261, value:1
type:1, code:261, value:0

In the EG915U-EC module, the Modem can be controlled to wake up the CPU GPIO pin using an AT command,
which corresponds to the CPU's GPIO PB7, and on the Modem side, it is Pin 26. The AT command is
AT+QGPIOW=26,0/1. The test example is as follows:

First, start the example_input_intr tool to monitor GPIO PB7 and run it in the background. When the status of
GPIO PB7 changes, an event printout will be generated.
$ example_input_intr &

Control the module to input a low-level signal to GPIO PB7 through the command as follows.
$ echo "AT+QGPIOW=26,0" > /dev/ttySTM3
OK
type:1, code:261, value:1

GV850 Software Development Guide

28

Control the module to input a high-level signal to GPIO PB7 through the command as follows.
$ echo "AT+QGPIOW=26,1" > /dev/ttySTM3
OK
type:1, code:261, value:0

When the device uses the EG915Q-NA module, the test commands are different. Control the module to input a
low-level signal to GPIO PB7 through the command.
$ AT+QGPIOCFG=1,28,1,3,0
$ AT+QGPIOCFG=AT+QGPIOCFG=3,28,0
OK
type:1, code:261, value:1

Control the module to input a high-level signal to GPIO PB7 through the command.
$ AT+QGPIOCFG=AT+QGPIOCFG=3,28,1
OK
type:1, code:261, value:0

Use the provided example_modem_at tool for command testing, as detailed in the "Example of Codes" section.
The LTE module can serve as a wake-up source for system sleep, as detailed in the "System Sleep" section.

The following demonstrates the process of how to connect to the network, send and receive TCP data.
Check for correct SIM card reading,

$ echo "AT+CPIN?" > /dev/ttySTM3
+CPIN: READY

OK

Check CS status,
$ echo "AT+CREG?" > /dev/ttySTM3
+CREG: 0,1

OK

Attach PS domain,
$ echo "AT+CGATT=1" > /dev/ttySTM3
OK
$ echo "AT+CGATT?" > /dev/ttySTM3
+CGATT: 1

OK

Activate PDP,

GV850 Software Development Guide

29

$ echo "AT+QIACT=1" > /dev/ttySTM3
OK

Check the PDP status and obtained IP address,
$ echo "AT+QIACT?" > /dev/ttySTM3
+QIACT: 1,1,3,"10.162.247.73","2408:8456:3040:AB7:1:1:A0D9:4891"

OK

Ping domain name to check network connectivity,
$ echo "AT+QPING=1,\"www.baidu.com\"" > /dev/ttySTM3
OK

+QPING: 0,"157.148.69.74",64,313,255
+QPING: 0,"157.148.69.74",64,61,255
+QPING: 0,"157.148.69.74",64,61,255
+QPING: 0,"157.148.69.74",64,50,255
+QPING: 0,4,4,0,50,313,87

Open socket, using 218.17.50.142:971 server/port as the example,
$ echo "AT+QIOPEN=1,0,\"TCP\",\"218.17.50.142\",971,0,0" > /dev/ttySTM3
OK

+QIOPEN: 0,0
Check the status of the socket and confirm that it is connected,

$ echo "AT+QISTATE?" > /dev/ttySTM3
+QISTATE: 0,"TCP","218.17.50.142",971,0,2,1,0,0,"uart1"

OK

Send the test string '12345' in HEX format,
$ echo "AT+QISENDEX=0,\"3132333435\"" > /dev/ttySTM3
SEND OK

The server responds with data '67890', and the module will notify the module with a URC message upon receiving the
data,
+QIURC: "recv",0

At this point, the received data can be read from the cache and the actual length and data will be returned,
$ echo "AT+QIRD=0,1500" > /dev/ttySTM3
+QIRD: 5

67890

GV850 Software Development Guide

30

OK

Close socket，
$ echo "AT+QICLOSE=0" > /dev/ttySTM3
OK

Check the status of the socket and confirm that it is closed,
$ echo "AT+QISTATE?" > /dev/ttySTM3
OK

4.2.2 Ethernet Adapter

The Modem's USB port is connected to the CPU's USB Host Controller. Setting the Modem USB VBUS to high will
enable the Model's USB functionality. The GV850 device comes preloaded with the necessary drivers, allowing the
module to be used as a network device in the Linux system.

It is important to note that the module can only establish one PDP connection at a time. If a PDP connection has
been established in the module's UART modem mode, it needs to be closed first. Then, the modem can be used as
an Ethernet Adapter.

If you are running the pre-installed software from Queclink, please shut down the selftask program before testing.
This software will automatically start upon boot and create a PDP for the module. To avoid PDP conflicts, it is
necessary to stop the program first.
$ /etc/init.d/S99selftask stop

Restart the module.
$ gpioset 0 15=1;sleep 1;gpioset 5 5=1;sleep 3;gpioset 5 5=0

Then, turn on the Modem USB VBUS 5V, and the module starts working in USB device mode. Taking the EG915U-EC
model as an example, you can then see the system begin to enumerate and recognize the device.

$ gpioset 0 4=1
[642.617144] usb 1-1: new high-speed USB device number 2 using ehci-platform
[642.817845] usb 1-1: config 1 interface 0 altsetting 0 endpoint 0x81 has an invalid bInterval 32, changing to 9
[642.836277] cdc_ether 1-1:1.0 usb1: register 'cdc_ether' at usb-5800d000.usbh-ehci-1, CDC Ethernet Device,
02:4b:b3:b9:eb:e5
[643.020467] usbcore: registered new interface driver option
[643.026565] usbserial: USB Serial support registered for GSM modem (1-port)
[643.033358] option 1-1:1.2: GSM modem (1-port) converter detected
[643.040808] usb 1-1: GSM modem (1-port) converter now attached to ttyUSB0
[643.048384] option 1-1:1.3: GSM modem (1-port) converter detected
[643.054752] usb 1-1: GSM modem (1-port) converter now attached to ttyUSB1
[643.062429] option 1-1:1.4: GSM modem (1-port) converter detected
[643.069557] usb 1-1: GSM modem (1-port) converter now attached to ttyUSB2
[643.076386] option 1-1:1.5: GSM modem (1-port) converter detected
[643.083580] usb 1-1: GSM modem (1-port) converter now attached to ttyUSB3

GV850 Software Development Guide

31

[643.091082] option 1-1:1.6: GSM modem (1-port) converter detected
[643.098129] usb 1-1: GSM modem (1-port) converter now attached to ttyUSB4
[643.105420] option 1-1:1.7: GSM modem (1-port) converter detected
[643.112104] usb 1-1: GSM modem (1-port) converter now attached to ttyUSB5
[643.119807] option 1-1:1.8: GSM modem (1-port) converter detected
[643.126915] usb 1-1: GSM modem (1-port) converter now attached to ttyUSB6

The lsmod command shows that the drivers option and usb_wwan have been automatically loaded.
$ lsmod
Module Size Used by Tainted: G
option 49152 0
usb_wwan 20480 1 option
…

The VID/PID of the EG915U-EC and EG915Q-NA modules are different, which can be queried through the lsusb
command. For the EG915U-EC module, the VID/PID is 2c7c:0901, and for the EG915Q-NA module, the VID/PID is
2c7c:6007.
$ lsusb

model PID/VID Device Type Device Node Description

EG915U-EC 0x2c7c
0x0901

network usb1 ECM/RNDIS

TTY /dev/ttyUSB0 AT Command

/dev/ttyUSB1 DIAG

/dev/ttyUSB2 MOS

/dev/ttyUSB3 CP log

/dev/ttyUSB4 AP log

/dev/ttyUSB5 Modem

/dev/ttyUSB6 GNSS

EG915Q-NA 0x2c7c
0x6007

network usb1 ECM/RNDIS

TTY /dev/ttyUSB0 AT Command

/dev/ttyUSB1 Log

/dev/ttyUSB2 modem

/dev/ttyUSB3

The quectel-CM tool can be used to quickly establish a data connection. quectel-CM can be run in the background
to prevent printing from affecting command line operations.
$ quectel-CM
[01-01_16:19:05:810] QConnectManager_Linux_V1.6.5.1
[01-01_16:19:05:820] Find /sys/bus/usb/devices/1-1 idVendor=0x2c7c idProduct=0x901, bus=0x001, dev=0x002
[01-01_16:19:05:823] Auto find qmichannel = /dev/ttyUSB0
[01-01_16:19:05:823] Auto find usbnet_adapter = usb1
[01-01_16:19:05:825] netcard driver = cdc_ether, driver version = 5.15.67
[01-01_16:19:05:828] Modem works in ECM_RNDIS_NCM mode
…

GV850 Software Development Guide

32

[01-01_16:47:38:086] ip link set dev usb1 up
[01-01_16:47:38:104] busybox udhcpc -f -n -q -t 5 -i usb1
udhcpc: started, v1.35.0
[01-01_16:47:38:143] AT< +QNETDEVSTATUS: 1
udhcpc: broadcasting discover
udhcpc: broadcasting select for 10.141.9.199, server 192.168.1.1
udhcpc: lease of 10.141.9.199 obtained from 192.168.1.1, lease time 30840
[01-01_16:47:38:388] deleting routers
[01-01_16:47:38:444] adding dns 120.80.80.80
[01-01_16:47:38:444] adding dns 221.5.88.88
…

After the data connection is successfully established, you can query that the local network device usb1 has obtained
the assigned IP address.
$ ifconfig usb1
usb1 Link encap:Ethernet HWaddr 02:4B:B3:B9:EB:E5

inet addr:10.69.160.209 Bcast:10.69.160.255 Mask:255.255.255.0
inet6 addr: 2408:8456:3010:9093:4b:b3ff:feb9:ebe5/64 Scope:Global
inet6 addr: fe80::4b:b3ff:feb9:ebe5/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:11 errors:0 dropped:0 overruns:0 frame:0
TX packets:23 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:1871 (1.8 KiB) TX bytes:2977 (2.9 KiB)

Query the routing table and you can see that the gateway address has been obtained.
$ route –n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 10.69.160.1 0.0.0.0 UG 0 0 0 usb1
10.69.160.0 0.0.0.0 255.255.255.0 U 0 0 0 usb1
…

The DNS server address has also been obtained.
$ cat /etc/resolv.conf
nameserver 120.80.80.80 # usb1
nameserver 221.5.88.88 # usb1

You can test the connectivity of the network.
$ ping baidu.com
PING baidu.com (39.156.66.10): 56 data bytes
64 bytes from 39.156.66.10: seq=0 ttl=48 time=73.783 ms
64 bytes from 39.156.66.10: seq=1 ttl=48 time=57.459 ms
…

GV850 Software Development Guide

33

4.3. GNSS

Module model: UBX_ M10050, connected through UART. It uses USART6, which corresponds to /dev/ttySTM6. It supports
u-blox and NMEA protocols.

硬件资源列表：

Pin Name Description Remarks

PD13 GNSS module power control pin
0: Power off
1: Power on

PB2
GNSS module built-in, external antenna
detection pin.

0: Detected that an external antenna is inserted
1: No external antenna detected
For this function test, the GPS chip must be powered
on, otherwise the test will be invalid.

USART6
GNSS module and CPU communication
port

Device node: /dev/ttySTM6
Baud rate: 38400
Start bit: 1bit
Data bit: 8bits
Stop bit: 1bit
No checksum

The reference testing commands are as follows:
Set the baudrate (38400 by default for M10050),
$ stty -F /dev/ttySTM6 ispeed 38400 ospeed 38400 cs8

PD13 power supply enable output high level
$ gpioset 3 13=1

Receive the NMEA data sent by the GPS module
$ cat /dev/ttySTM6
$GNRMC,041722.00,A,2234.41319,N,11356.88217,E,0.002,,050923,,,D,V*11
$GNVTG,,T,,M,0.002,N,0.005,K,D*3F
$GNGGA,041722.00,2234.41319,N,11356.88217,E,2,12,0.52,111.9,M,-2.7,M,,*5A
$GNGSA,A,3,11,15,24,20,23,29,05,13,18,,,,0.97,0.52,0.82,1*06
$GNGSA,A,3,09,36,10,34,05,11,,,,,,,0.97,0.52,0.82,3*0F
$GNGSA,A,3,07,13,28,02,06,59,16,40,27,09,30,20,0.97,0.52,0.82,4*0E
$GNGSA,A,3,,,,,,,,,,,,,0.97,0.52,0.82,5*06

GV850 Software Development Guide

34

(…)

Additionally, NMEA data can be forwarded to RS232_<N> serial port, and then open RS232 through the u-center tool to
more intuitively parse NMEA data. The following example is to forward NMEA data to RS232_ 2 serial ports.
Set RS232_2 baud rate to same 38400:
$ stty -F /dev/ttySTM2 ispeed 38400 ospeed 38400 cs8
Forward the data to RS232_2:
$ cat /dev/ttySTM6 > /dev/ttySTM2

Then select the correct COM port and baud rate in the u-center tool to start receiving and parsing data.

Linux system can also provide parsing and control tools that support multi-protocol such as NMEA and u-blox through the
integration of gpsd software. For more information on how to use the tools, please refer to the following website:
 https://gpsd.io/

cgps and gpsmon tools can instantly parse and display positioning data. cgps receives and parses JSON data containing
positioning data information provided by gpsd services. And gpsmon directly parses and displays the raw data of the GPS
module. Depending on the protocol supported by the module, choose to use u-blox or NMEA protocol accordingly.

$ cgps

GV850 Software Development Guide

35

$ gpsmon
The results of parsing data using the u-blox protocol:

$ gpsmon –n
The results of parsing data using the NMEA protocol:

GV850 Software Development Guide

36

Check u-blox version:
$ ubxtool -p MON-VER
UBX-MON-VER:

swVersion ROM SPG 5.10 (7b202e)
hwVersion 000A0000
extension FWVER=SPG 5.10
extension PROTVER=34.10
extension GPS;GLO;GAL;BDS
extension SBAS;QZSS

WARNING: protVer is 10.00, should be 34.10. Hint: use option "-P 34.10"

UBX-NAV-PVT:
iTOW 357228000 time 2023/9/21 03:13:30 valid x37
tAcc 24 nano -443396 fixType 3 flags x3 flags2 xea
numSV 32 lon 1139479540 lat 225735412 height 110133
hMSL 112846 hAcc 580 vAcc 1212
velN -1 velE 2 velD 17 gSpeed 2 headMot 0
sAcc 112 headAcc 17333086 pDOP 103 reserved1 0 16476 12118
headVeh 3102272 magDec 0 magAcc 0
(…)

You can use the following commands to perform cold start and calculate the time it takes from no positioning to
positioning by the status change of the cgps monitoring tool:
$ ubxtool -p COLDBOOT -P 34.10

GV850 Software Development Guide

37

4.4. CAN Module

4.4.1 GV80 CAN OBD Module

GV850 uses the integrated CAN OBD module to process CAN messages and vehicle-related data.

The SPC582B60E1 module is connected to the CPU via USART7 UART, corresponding to /dev/ttySTM7. It supports
vehicle-mounted CAN protocols such as J1939, J1708, FMS, and OBD. The module automatically parses vehicle parameters
for host queries and supports a wide range of vehicle types, covering most mainstream models available on the market.

GV850 Software Development Guide

38

Additionally, it includes a Tachograph Reader function for reading Tachograph data and downloading driving record files
remotely. The module also offers KLine functionality.

Hardware resource list:
Pin Name Description Remarks

PG3 CAN module power control pin
0: Power off
1: Power on

PA4
The device 5V boost is enabled, and this
function needs to be enabled for the CAN
module to work properly.

1: Enable
0: Disable

PG1 CAN module wakes up the CPU pin
0: CAN module is in working state
1: CAN module is in sleeping state

USART7
CAN module and CPU communication
port

Device node: /dev/USART7
Baud rate: 115200
Start bit: 1bit
Data bit: 8bits
Stop bit: 1bit
No checksum

If the pre-installed Queclink software is running, please shut down the canobd process before testing. This software
will automatically start upon boot and open the serial port /dev/ttySTM7. To prevent conflicts, it is necessary to stop
the program first.
$ /etc/init.d/S70canobd stop

Restart the CAN module.
$ gpioset 6 3=0;sleep 3;gpioset 6 3=1

Set the baud rate (default) to 115200, and because the module serial port data is binary, the parameter raw needs to be
used when using the stty tool to set it. Otherwise, the default tty attribute may overwrite the read data, such as the
enabled icrnl attribute by default, which will overwrite 0x0D with 0x0A.
$ stty -F /dev/ttySTM7 ispeed 115200 ospeed 115200 cs8 raw
PG3 CAN MCU Power supply output enable：
$ gpioset 6 3=1

GV850 Software Development Guide

39

PA4 5V voltage increase enable：
$ gpioset 0 4=1

On Linux system, the read and written binary data can be edited by using the hexedit tool, and then read and write by
using the dd tool.
For example, write the binary command to be sent into the file out:
$ touch out
$ hexedit out

Start reading in advance (at the background) and write the read data to the in file,
$ dd if=/dev/ttySTM7 of=in &

Send the out file,
$ dd of=/dev/ttySTM7 if=out

Use the hexdump tool to display the read binary data.
$ hexdump -C in

The module command/protocol description is detailed in the document "[24-01-03] CAN-Logistic v3 protocol
XON-XOFF.pdf".

We have provided a CAN module testing tool to assist with testing. The name of the tool is example_external_can. This tool
can send raw frames, receive module data, and query basic information. For detailed information, refer to the "Example of
Codes" section.

We recommend using the CANOBD core interface to test the CAN module. For details, refer to the "Canobd" section in the
"Queclink Software Module" chapter.

The module provides three configurable GPIO outputs, where OUT2 is connected to PG1 of the CPU and can notify the CPU
of events. The testing method is as follows:

example_input_intr tool can be used to monitor PG1 event, event code is 257, event value 0 indicate CAN module enter
sleep, 1 indicate CAN module is wroking.
$ example_input_intr
type:1, code:257, value:0

GV850 Software Development Guide

40

type:1, code:257, value:1

If the module has no serial port data and CAN bus data within 60 seconds, the CAN module will enter sleep mode and
receive the event type:1, code:257, value:0. The CPU will wake up the CAN module by sending serial port data to it, and
will receive the event type:1, code:257, value:1.

The CAN module can serve as a wake-up source for system sleep. On hardware, OUT2 is connected to PG1 of CPU as the
wake-up source. The OUT2 function is configurable, with the default function being 'vehicle's buses active',

The module will enter sleep on its own and pull PG1 up. When the module is awakened, pressing the CAN sync button will
pull PG1 down。

The module can be used as a system sleep wake-up source, supporting up to Stop mode. For test methods, refer to the
"System Sleep" section.

4.4.2 GV8551 Raw CAN FD

The GV851 device features two CAN FD transceiver channels, replacing the CAN OBD module in the GV850 device.
CAN data services are handled by the CPU. The stm32mp133 main controller has two built-in CAN FD controllers.
Both CAN modules (FDCAN1 and FDCAN2) comply with ISO 11898-1 (CAN protocol specification version 2.0 part A,
B) and the CAN FD protocol specification version 1.0. For details on CAN FD, refer to the official manual of the
stm32mp133 ST.

GV850 Software Development Guide

41

The TX/RX PIN of the CAN FD controller is connected to the CANTJA1042 transceiver, and the IO configuration is as
follows:

Pin Name Description Remarks
PA14 CAN communication red LED 0: Off

1: On
PD2 CAN communication green LED 0: Off

1: On
PE3 CANFD1 RX CANFD module pins inside the chip
PG10 CANFD1 TX CANFD module pins inside the chip
PB5 CANFD2 RX CANFD module pins inside the chip
PB13 CANFD2 TX CANFD module pins inside the chip
PA4 Onboard 5V boost enable control pin, CANFD

data transmission and reception needs to enable
this function

0: Disable
1: Enable

PG3 Onboard 5V boost enable control pin, CANFD
data transmission and reception needs to enable
this function

0: Disable power supply
1: Enable power supply

PG5 CANFD1 transceiver working state selection pin 0: CANFD transceiver is working
1: CANFD transceiver is sleeping

PH13 CANFD2 transceiver working state selection pin 0: CANFD transceiver is working
1: CANFD transceiver is sleeping

PH6 Working mode switch button 0: button pressed
1: button released

PF9(UART8) K-LINE communication port RX pin Device node: /dev/ttySTM4
PE1(UART8) K-LINE communication port TX pin V1.02 and earlier versions only support RX.

Devices with hardware versions greater than
this support TX and RX

GV850 Software Development Guide

42

Device node: /dev/ttySTM4

For CAN communication test, please connect the two CAN communication ports through a 60 ohm resistor to form a
loopback test link as shown in the figure below. The physical wiring is as shown below.

Enable 5V boost (PA4),
$ gpioset 0 4=1

Enable the CAN transceiver (PG3) power supply,
$ gpioset 6 3=1

Set the CAN1 transceiver to working state (PG5),
$ gpioset 6 5=0

Set the CAN2 transceiver to working state (PH13),
$ gpioset 7 13=0

View the system CAN devices,

$ ifconfig -a | grep -C 7 can
can0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00

UP RUNNING NOARP MTU:72 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:8 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:10
RX bytes:0 (0.0 B) TX bytes:64 (64.0 B)
Interrupt:52

GV850 Software Development Guide

43

can1 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00
UP RUNNING NOARP MTU:72 Metric:1
RX packets:15 errors:0 dropped:0 overruns:0 frame:0
TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:10
RX bytes:120 (120.0 B) TX bytes:0 (0.0 B)
Interrupt:54

Set the CAN1 (device can0) baud rate,
$ ip link set can0 type can bitrate 100000 dbitrate 200000 fd on

Set the CAN2 (device can1) baud rate,
$ ip link set can1 type can bitrate 100000 dbitrate 200000 fd on

Enable CAN1,
$ ip link set can0 up

Enable CAN2.
$ ip link set can1 up

After the settings are complete, use the can-utils tool installed on the system to test it.

CAN2 uses the candump tool to receive data and runs in the background.
$ candump can1 &

CAN1 uses the cansend tool to send test data.
$ cansend can0 123#1122334455667788

The candump tool running in the background will print the data received by CAN2.
can1 123 [8] 11 22 33 44 55 66 77 88

Check CAN1 status information,
$ ip -details link show can0
3: can0: <NOARP,UP,LOWER_UP,ECHO> mtu 72 qdisc pfifo_fast state UP mode DEFAULT group default qlen 10

link/can promiscuity 0 minmtu 0 maxmtu 0
can <FD> state ERROR-ACTIVE (berr-counter tx 0 rx 25) restart-ms 0

bitrate 100000 sample-point 0.875
tq 41 prop-seg 104 phase-seg1 105 phase-seg2 30 sjw 1 brp 1
m_can: tseg1 2..256 tseg2 2..128 sjw 1..128 brp 1..512 brp_inc 1
dbitrate 200000 dsample-point 0.875
dtq 208 dprop-seg 10 dphase-seg1 10 dphase-seg2 3 dsjw 1 dbrp 5
m_can: dtseg1 1..32 dtseg2 1..16 dsjw 1..16 dbrp 1..32 dbrp_inc 1
clock 24000000 numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs 65535 parentbus

platform parentdev 4400e000.can

GV850 Software Development Guide

44

The GV851 device can use the SocketCAN interface provided by the Linux system for communication. For more information
about SocketCAN, see the official website: https://www.kernel.org/doc/html/latest/networking/can.html.

4.5. G-sensor

Sensor model: ICM-40607-K, connected through SPI bus. The ICM-40607-K is a 6-axis MEMS MotionTracking device that
combines a 3-axis gyroscope and a 3-axis accelerometer. The system provides IIO driver and device node
/sys/bus/iio/devices/iio: device2.

硬件资源列表：

Pin Name Description Remarks

PC13
G-sensor module wakes up the CPU pin

0: BLE module message is ready or a Bluetooth event
occurs
1: BLE module has no message or event

SPI4
G-sensor module and CPU communication
port

SPI communication is managed by the II0 system
Device node: /sys/bus/iio/devices/iio:device2

For current GV850, after power on, the G-sensor is turned on by default.
Use the provided example_gsensor tool for testing, as detailed in the "Example of Codes" section.
Check the IIO driver corresponding to G-sensor.
$ lsmod
Module Size Used by Tainted: G
inv_CPU_iio_spi 16384 0
inv_CPU_iio 73728 2 inv_CPU_iio_spi

When the system enters the Standby mode, the SPI state cannot be maintained. After exiting the Standby mode, the
SPI needs to be reinitialized. You can reinitialize the SPI by unloading and loading the driver. The method is as
follows:

Remove the driver:
$ rmmod inv_CPU_iio_spi
[1296.267959] inv-CPU-iio-spi spi0.0: inv-CPU-iio module removed.
$ rmmod inv_CPU_iio

Reload the driver:
$ modprobe inv_CPU_iio
$ modprobe inv_CPU_iio_spi

https://www.kernel.org/doc/html/latest/networking/can.html.

GV850 Software Development Guide

45

[1348.975145] inv_CPU: inv_CPU_probe: power on here.
[1348.978562] inv_CPU: inv_CPU_probe: power on.
[1349.093593] inv_CPU: id name = icm42600
[1349.096600] inv_CPU: whoami= dd
[1349.219978] inv_CPU: inv_CPU_initialize: initialize result is 0....
[1349.230144] inv_CPU: wakeup_source is created successfully
[1349.243890] inv-CPU-iio-spi spi0.0: icm42600 ma-kernel-9.3.3-test2 is ready to go!
[1349.250175] inv_CPU: Data read from FIFO

Enter the driver sysfs directory, and you can see the interface provided by the driver:
$ cd /sys/bus/iio/devices/iio:device2

Read the value of the IMU on-chip register. Because the on-chip registers are mainly divided into Bank0 and Bank4,
they will be printed separately. For detailed meaning of the registers, see "DS-000407 ICM-40607-K v1.0 for
Queclink.pdf".
$ cat debug_reg_dump
bank 0
0x0: 0x0
0x1: 0x0
0x2: 0x0
…
bank 4
0x40: 0xa2
0x41: 0x85
…
0x46: 0x45
0x47: 0x5b

The G-sensor driver provides two interfaces, debug_reg_write_addr and debug_reg_write (the interface parameters
are in decimal), which can modify the register values. Because the registers mentioned above are divided into Bank0
and Bank4, you need to switch to the corresponding Bank before modifying the addr register value.

Writing 4 to register 0x76 switches to Bank4.
$ echo 118 > debug_reg_write_addr; echo 4 > debug_reg_write

Then you can modify the 4Ah (74) register of Bank4 and write 0xC8 (200).
$ echo 74 > debug_reg_write_addr; echo 200 > debug_reg_write

Similarly, before modifying the 0x57 (87) register of Bank0, you need to switch to Bank0 first.
$ echo 118 > debug_reg_write_addr; echo 0 > debug_reg_write
$ echo 87 > debug_reg_write_addr; echo 5 > debug_reg_write

The module supports the vibration wake-up (WAKE ON MOTION) function. INT1 is connected to the CPU via GPIO
PC13 and can be used as a system sleep wake-up source.

GV850 Software Development Guide

46

Enable the vibration wake-up function.

$ echo 1 > event_motion_detect_enable
[74.262869] inv_CPU: Motion Detect Enabled

However, because the original driver enables UI_DRDY_INT1_EN in bit3 of the INT_SOURCE0 register after enabling
vibration wake-up, the interrupt will be triggered continuously and needs to be turned off.

Only the WOM_*** part of INT_SOURCE1 is kept as the interrupt source.

Modify the INT_SOURCE0 register to disable unnecessary interrupt sources.
$ echo 118 > debug_reg_write_addr; echo 0 > debug_reg_write
$ echo 101 > debug_reg_write_addr; echo 0 > debug_reg_write

Use the following method to force the system into Stop mode. For details, see the "System Sleep" section.

GV850 Software Development Guide

47

$ echo enabled > /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup
$ echo enabled > /sys/devices/platform/soc/40010000.serial/power/wakeup
$ echo mem > /sys/power/state
[145.630453] PM: suspend entry (deep)
[145.632931] Filesystems sync: 0.000 seconds
[145.638156] Freezing user space processes ... (elapsed 0.001 seconds) done.
[145.645593] OOM killer disabled.
[145.648595] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
[145.656064] printk: Suspending console(s) (use no_console_suspend to debug)

After the system enters sleep mode, as long as the vibration device reaches the detection threshold, it will wake up
and exit sleep mode to return to the system command line.

Modify the sensitivity of vibration wake-up. The smaller the threshold, the more sensitive it is. You can modify the
thresholds of the three axes (4Ah, 4Bh, 4Ch registers) X, Y, and Z separately.

To modify, first switch to Bank4, and then modify the three-axis registers in sequence.
$ echo 118 > debug_reg_write_addr;echo 4 > debug_reg_write
$ echo 74 > debug_reg_write_addr;echo 200 > debug_reg_write
$ echo 75 > debug_reg_write_addr;echo 200 > debug_reg_write
$ echo 76 > debug_reg_write_addr;echo 200 > debug_reg_write

Turn off the vibration wake-up feature.
$ echo 0 > event_motion_detect_enable
[518.980117] inv_CPU: Motion Detect Disabled

Attached: Complete test instructions for turning on vibration wake-up, using a high sensitivity threshold, which can
be triggered by just tapping the device.

$ cd /sys/bus/iio/devices/iio:device2
$ echo 1 > event_motion_detect_enable
$ echo 118 > debug_reg_write_addr
$ echo 0 > debug_reg_write
$
$ echo 101 > debug_reg_write_addr

GV850 Software Development Guide

48

$ echo 0 > debug_reg_write
$
$ echo 118 > debug_reg_write_addr
$ echo 4 > debug_reg_write
$
$ echo 74 > debug_reg_write_addr
$ echo 1 > debug_reg_write
$
$ echo 75 > debug_reg_write_addr
$ echo 1 > debug_reg_write
$
$ echo 76 > debug_reg_write_addr
$ echo 1 > debug_reg_write
$ cd -

Turn off vibration to wake up.
$ cd /sys/bus/iio/devices/iio:device2
$ echo 0 > event_motion_detect_enable
$ cd -
[669.702742] inv_CPU: Motion Detect Disabled

4.6. BLE

Module model: BlueNRG-345AC, connected through I2C bus. STM32MP133 platform reads and writes from I2C bus 0
through/dev/i2c-0 device.

Hardware resource list:
Pin Name Description Remarks

PE15 BLE module power control pin
0: Power off
1: Power on

PG7 BLE module reset control pin
0: Normal operation
1: Trigger module reset

PG4 BLE module wakes up the CPU pin
0: BLE module message is ready or event occurs
1: BLE module has no message or event occurs

PH12 CPU wakes up the BLE module pin 0: wake up the BLE module

GV850 Software Development Guide

49

1: allow the BLE module to enter sleep mode

I2C2
CPU communicates with the BLE module
port

Device node: /dev/i2c-0

The reference testing commands are as follows:
PE15 power supply enable output high,

$ gpioset 4 15=1
PG7 is used to reset BLE, set 1 to reset BLE module, set 0 to make BLE module work normal.

$ gpioset 6 7=0
Scan I2C bus 0,

$ i2cdetect -y 0
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- 3e --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

After scanning the slave device on the I2C bus, the device boot message can be read. The BLE module serves as the I2C
slave device with address 0xBE and register address 0x01, and reads 220 bytes each time. The command/protocol
description is detailed in the document "BLE100 @ Bluetooth Internal Protocol".
$ i2ctransfer -y 0 w1@0x3e 0x01 r220

The provided example_ble tool can also be used for command testing, as detailed in the "Example of Codes" section. The
BLE module is developed by Queclink itself. The command/protocol description is detailed in the document "BLE100 @
Bluetooth Internal Protocol".

The sleep of the BLE module can be controlled, PH12 output high level allows sleep and low level wakes up the module,
$ gpioset 7 12=1

BLE Module events can be notified to the CPU through the PG4 pin, such as sending the command AT+F=12 to the BLE
module, which will wake up the CPU,
$ example_ble AT+F=12
recv from BLE:
+ACK:F,12,1,OK

When the BLE module has a reply message or reports a message, it will pull down the BLE wake-up CPU pin.Level change
events will be monitored on the PG4 pin.We can monitor and view it through the interrupt number of PG4 or
/dev/input/event0.

GV850 Software Development Guide

50

Check the interrupt count of PG4.
$ cat /proc/interrupts | grep PG4
74: 6 stm32gpio 4 Edge Wakeup-PG4

Monitor PG4 input events,
$ example_input_intr
type:1, code:259, value:0
type:1, code:259, value:1

When a Bluetooth module request command occurs, check the above events and counts.
$example_ble AT+F=1

The BLE module can serve as a wake-up source for system sleep, as detailed in the "System Sleep" section.

4.7. RS232/RS485

There are 2 RS232 and 1 RS485.

4-pin Hardware Device Description
RS485 USART5 /dev/ttySTM5 /
RS232_1 USART1 /dev/ttySTM1 /
RS232_2 USART2 /dev/ttySTM2 /

The RS485 port's transceiver switching is automatically controlled by hardware, and no software management is required.
When using the RS385 function and DV5_X, you need to turn on the 5V boost enable, and the control pin is GPIO PA4.
$ gpioset 0 4=1

The front view of the 4-pin RS485 connector is as follows:

GV850 Software Development Guide

51

3 1

4 2

Pin Pin Name Cable Color Description Device Nodes Remarks

1 GND Black External Accessory Ground / /

2 DC5V_3 Red External Accessory Power 250mAMax gpiochip6 8(PG8)

0: Disable
output

1: Enable
output

3 485B Orange white RS485B / /

4 485A Orange black RS485A / /

The front view of the 4-pin RS232-1 connectors is as follows:

3 1

4 2

Pin Pin Name Cable Color Description Device Nodes Remarks

1 GND Black External Accessory Ground / /

2 DC5V_1 Red External Accessory Power 250mAMax gpiochip4 12(PE12)

0: Disable
output
1: Enable
output

3 TX232_1 Gray black UART TXD1 RS232 / /

4 RX232_1 Gray white UART RXD1 RS232 / /

The front view of the 4-pin RS232-2 connectors is as follows:

GV850 Software Development Guide

52

3 1

4 2

Pin Pin Name Cable Color Description Device Nodes Remarks

1 GND Black External Accessory Ground / /

2 DC5V_2 Red External Accessory Power 250mAMax gpiochip4 13(PE13)

0: Disable
output
1: Enable
output

3 TX232_2 Gray black UART TXD2 RS232 / /

4 RX232_2 Gray white UART RXD2 RS232 / /

The test method is as follows, taking RS232_1 as an example,

Set the baud rate,
$ stty -F /dev/ttySTM1 ispeed 115200 ospeed 115200 cs8 -icrnl -isig -icanon -echo -echoe
Send data,
$ echo "12345" > /dev/ttySTM1
Receive data,
$ cat /dev/ttySTM1

4.8. GPIO&ADC&1-WIRE

There are 5 DIN ports and 5 OUT ports ,4 AIN ports 1 and 1-wire bus .DIN is the abbreviation of Negative trigger input.OUT
is the abbreviation of Open drain output. AIN is the abbreviation of Analog Input.

The front view of the 16-pin connector is as follows:

GV850 Software Development Guide

53

Descriptions of IOs and ADCs are as follows:

Pin Pin Name Cable Color Description Device Nodes Remarks

1 AIN1 Brown/white Analog Input1 0~32V

/sys/bus/iio/devices/iio:d
evice1/in_voltage_scale
/sys/bus/iio/devices/iio:d
evice1/in_voltage10_raw

Volt=scale*raw*(18+20
0)/18

Unit: mV

2 DIN2 Orange/black Negative trigger input2 gpiochip0 3 $ gpioget gpiochip0 3

3 AIN2 Red/brown Analog Input2 0~32V

/sys/bus/iio/devices/iio:d
evice1/in_voltage_scale
/sys/bus/iio/devices/iio:d
evice1/in_voltage4_raw

Volt=scale*raw*(18+20
0)/18

Unit: mV

4 DIN3 Blue Negative trigger input3 gpiochip2 10 $ gpioget gpiochip2 10

5 AIN3 White/black Analog Input3 0~32V

/sys/bus/iio/devices/iio:d
evice0/in_voltage_scale
/sys/bus/iio/devices/iio:d
evice0/in_voltage2_raw

Volt=scale*raw*(18+20
0)/18

Unit: mV

6 DIN4 Black/brown Negative trigger input4 gpiochip2 11 $ gpioget gpiochip2 11

7 AIN4 Gray/black Analog Input4 0~32V

/sys/bus/iio/devices/iio:d
evice1/in_voltage_scale
/sys/bus/iio/devices/iio:d
evice1/in_voltage0_raw

Volt=scale*raw*(18+20
0)/18

Unit: mV

8 DIN5 Pink Negative trigger input5 gpiochip2 12 $ gpioget gpiochip2 12

9 OUT3 Brown Open drain output3 gpiochip8 0
$ gpioset gpiochip8

0=value

10 OUT5 Orange Open drain output5 gpiochip0 6
$ gpioset gpiochip0

6=value

11 OUT2 Yellow Open drain output2 gpiochip6 15
$ gpioset gpiochip6

15=value

12 OUT4 White Open drain output4 gpiochip3 7
$ gpioset gpiochip3

7=value

13 1W_DATA Green 1-WIRE data gpiochip7 2 /

GV850 Software Development Guide

54

14 GND Black Ground / /

15 VDD_1WIRE Red white
Power for 1-wire
devices 3.3V

gpiochip1 8 /

16 AGND Black gray Analog Ground / /

The front view of the 10-pin connector is as follows:

Descriptions of IOs and ADCs are as follows:

Pin Pin Name Cable Color Description Device Nodes Remarks

1 DCIN Red DC Power 8-32V / /

2 GND Black Ground / /

3 IGN White Positive trigger input gpiochip8 3 $ gpioget gpiochip8 3

4 DIN1 Orange Negative trigger input1 gpiochip2 8 $ gpioget gpiochip2 8

5 K-LINE Pink ISO K Line / /

6 OUT1 Yellow
Open drain output1 with

latch
gpiochip2 9
gpiochip1 1

$ gpioset gpiochip2
9=value

$ gpioset gpiochip1
1=0;sleep 0.02;

gpioset gpiochip1
1=1;sleep 0.02;

gpioset gpiochip1
1=0

7 CAN1L Brown black CAN Bus CAN1L / /

8 CAN1H Brown white CAN Bus CAN1H / /

GV850 Software Development Guide

55

The STM32MP133 platform can use the gpio tools tool to print GPIO group information.
$ gpiodetect
gpiochip0 [GPIOA] (16 lines)
gpiochip1 [GPIOB] (16 lines)
gpiochip2 [GPIOC] (16 lines)
gpiochip3 [GPIOD] (16 lines)
gpiochip4 [GPIOE] (16 lines)
gpiochip5 [GPIOF] (16 lines)
gpiochip6 [GPIOG] (16 lines)
gpiochip7 [GPIOH] (15 lines)
gpiochip8 [GPIOI] (8 lines)

Check the occupancy of the system GPIO port.
$ gpioinfo
gpiochip0 - 16 lines:

line 0: "PA0" kernel input active-high [used]
line 1: "PA1" unused input active-high
line 2: "PA2" kernel input active-high [used]
line 3: "PA3" unused input active-high
line 4: "PA4" unused input active-high
line 5: "PA5" kernel input active-high [used]
(…)

Monitor GPIO level changes. This command will change the GPIO port mode to input mode.
$ gpiomon gpiochipX line_numbe
Or
$ gpiomon X N

Set the GPIO level. Setting the GPIO port level will change the GPIO port mode to output mode. You can set the BIAS of the
GPIO port through the -B option. Set the drive mode of the GPIO port through the -D option.
$ gpioset gpiochipX line_numbe=value
Or
$ gpioset X N=value

$ gpioset --help
Usage: gpioset [OPTIONS] <chip name/number> <offset1>=<value1> <offset2>=<value2> ...

Set GPIO line values of a GPIO chip and maintain the state until the process exits

Options:
-h, --help: display this message and exit

9 CAN2L Blue CAN Bus CAN2L / /

10 CAN2H Brown CAN Bus CAN2H / /

GV850 Software Development Guide

56

-l, --active-low: set the line active state to low
-B, --bias=[as-is|disable|pull-down|pull-up] (defaults to 'as-is'):

set the line bias
-D, --drive=[push-pull|open-drain|open-source] (defaults to 'push-pull'):

set the line drive mode

Biases:
as-is: leave bias unchanged
disable: disable bias
pull-up: enable pull-up
pull-down: enable pull-down

Drives:
push-pull: drive the line both high and low
open-drain: drive the line low or go high impedance
open-source: drive the line high or go high impedance

Get the GPIO level. This command will change the GPIO port mode to input mode.
$ gpioget gpiochipX line_numbe
Or
$ gpioget X N

Get GPIO level, this command will not change GPIO port mode. This command is a tool developed by Queclink itself, and
you need to install the Quecklink software suite to use it.
$ gpiosnoop gpiochipX line_numbe
Or
$ gpiosnoop X N

4.9. Watchdog

GV850 adopts an external independent hardware watchdog.

Hardware resource list:
Pin Name Description Remarks

PI7 Watchdog enable IO
output high, enable watchdog
output low, disable watchdog

PG14 Feed watchdog IO
Flip the level within 1.7s, otherwise a reset will be
triggered.

The software watchdog feed is implemented through a qdog driver and a sysfs interface is provided to enable and disable
the watchdog,
$ lsmod | grep qdog

GV850 Software Development Guide

57

qdog 16384 0
Turn on watchdog and restart the watchdog automatically,

$ echo 1 > /proc/qlwatchdog_enabled

Turn off watchdog，
$ echo 0 > /proc/qlwatchdog_enabled

After enabling the watchdog, if you actively stop feeding the watchdog, the system will reset due to the cessation of
feeding the watchdog. When testing this feature, you need to remove the universal USB Type-A port of the USB cable,
leaving only the USB-to-serial connection. If the universal USB Type-A port is connected to the development computer, the
device's watchdog will not reset.

$ echo 1 > /proc/qlwatchdog_feed_stop

4.10. RTC

STM32MP133 has built-in RTC, device/dev/rtc0, and can be set and obtained through the system's built-in hwclock tool.
When the system starts, it will be loaded and set as the local time of the system. Reference command:

Query the current system time,
$ date
Wed Jan 5 03:19:16 UTC 2000

Set the system time to local time
$ date -s "2023-09-27 14:26:30"
Wed Sep 27 14:26:30 UTC 2023

Set the system time to RTC
$ hwclock –w

Read time from RTC
$ hwclock -r
Wed Sep 27 14:27:12 2023 0.000000 seconds

The RTC can serve as a wake-up source for system sleep, as detailed in the "System Sleep" section.

4.11. Power&Battery

Main power function and interface description are as follows:

Function Device Nodes Remarks

Voltage detection
/sys/bus/iio/devices/iio:device1/in_voltage_scale
/sys/bus/iio/devices/iio:device1/in_voltage2_raw

Volt=scale*raw*(82+1000)/82 + 800
Unit: mV

Backup battery power function and interface description are as follows:

Function Device Nodes Remarks
Voltage detection /sys/bus/iio/devices/iio:device1/in_voltage_scale Volt=scale*raw*(200+200)/200

GV850 Software Development Guide

58

/sys/bus/iio/devices/iio:device1/in_voltage1_raw Unit: mV

Power supply On

gpiochip5 12
D flip-flop data pin

gpiochip7 10
D flip-flop clock pin

On
$ gpioset gpiochip5 12=1
$ gpioset gpiochip7 10=0;sleep
0.02;gpioset gpiochip7 10=1;sleep
0.02;gpioset gpiochip7 10=0

Off
$ gpioset gpiochip5 12=0
$ gpioset gpiochip7 10=0;sleep
0.02;gpioset gpiochip7 10=1;sleep
0.02;gpioset gpiochip7 10=0

Power supply Off

Charging Start
gpiochip0 11

Start
$ gpioset gpiochip0 11=1
Stop
$ gpioset gpiochip0 11=0

Charging Stop

Charging Status gpiochip6 12
$ gpioget gpiochip6 12
0, Charging
1, Not Charging

Charging IC On

gpiochip0 13

On
$ gpioset gpiochip0 13=1
Off
$ gpioset gpiochip0 13=0
The power supply of the ammeter IC
is associated with the power supply
input of the battery charging
management IC. It is necessary to
enable it first (backup battery on,
charging ammeter IC on), then enable
charging (backup battery charging
starts), and then detect the charging
current

Charging IC Off

Charging Current
/sys/bus/iio/devices/iio:device1/in_voltage_scale
/sys/bus/iio/devices/iio:device1/in_voltage16_raw

Current=scale*raw
Unit: mA

Battery
Temperature
Detection On

gpiochip6 13

On
$ gpioset gpiochip6 13=1
Off
$ gpioset gpiochip6 13=0

Battery
Temperature
Detection Off
Battery
Temperature

/sys/bus/iio/devices/iio:device1/in_voltage_scale
/sys/bus/iio/devices/iio:device1/in_voltage15_raw

Volt=scale*raw
Unit: mV

GV850 Software Development Guide

59

4.11.1. Get Main power voltage

Read the main ADC sampling value,
$ cat /sys/bus/iio/devices/iio:device1/in_voltage_scale
0.805664062
$ cat /sys/bus/iio/devices/iio:device1/in_voltage2_raw
1057

According to the formula,
Volt = 0.805 * 1057 * (82 + 1000)/82 + 800 = 12027.53 mV

Other tests can be carried out according to the "Obtaining the main power voltage" test method.

4.11.2. Get battery voltage

First enable the battery voltage ADC acquisition,
$ gpioset gpiochip6 2=1

Turn on the battery power supply switch.
$ gpioset gpiochip5 12=1
$ gpioset gpiochip7 10=0;sleep 0.02;gpioset gpiochip7 10=1;sleep 0.02;gpioset gpiochip7 10=0

Read the battery ADC sampling value,
$ cat /sys/bus/iio/devices/iio:device1/in_voltage_scale
0.805664062
$ cat /sys/bus/iio/devices/iio:device1/in_voltage1_raw
2373

calculate,
Volt = 0.806*2373*(200+200)/200 = 3825.276mV，read out value 3825mV。

4.11.3. Battery Charging

Turn on the battery power supply switch.

$ gpioset gpiochip5 12=1
$ gpioset gpiochip7 10=0;sleep 0.02;gpioset gpiochip7 10=1;sleep 0.02;gpioset gpiochip7 10=0

Turn on the charging current meter IC power supply,
$ gpioset gpiochip0 13=1

Turn on backup battery charging.
$ gpioset gpiochip0 11=1

At this time, the battery is in charging state, and its charging state, charging current, and battery temperature can be

GV850 Software Development Guide

60

read.
Check the battery charging status.
$ gpioget -B as-is gpiochip6 12
0

Get the charging current and read the current ADC sampling value.
$ cat /sys/bus/iio/devices/iio:device1/in_voltage_scale
0.805664062
$ cat /sys/bus/iio/devices/iio:device1/in_voltage16_raw
242

calculate,
Current = 0.806 * 242 = 195 mA。

Remove external power and check the charging status.
$ gpioget -B as-is gpiochip6 12
1

Turn off the backup battery switch, and the system will be completely powered off and shut down.
$ gpioset gpiochip5 12=0
$ gpioset gpiochip7 10=0;sleep 0.02;gpioset gpiochip7 10=1;sleep 0.02;gpioset gpiochip7 10=0

4.11.4. Reading battery temperature

Enable battery temperature reading,
$ gpioset gpiochip6 13=1

Read the battery temperature ADC acquisition value,
$ cat /sys/bus/iio/devices/iio:device1/in_voltage_scale
0.805664062
$ cat /sys/bus/iio/devices/iio:device1/in_voltage15_raw
1963

calculate,
Volt = 0.806*1963 = 1582.178mV

Then according to the conversion table below, the temperature is about 25~30℃.

Temperature and voltage relationship conversion table:

Temperature (℃) Sampling voltage value (V)

-40 3.139534748

-35 3.091365042

GV850 Software Development Guide

61

-30 3.032462079

-25 2.96174315

-20 2.878204686

-15 2.78153967

-10 2.6715004

-5 2.548154561

0 2.413356082

5 2.269426314

10 2.118305522

15 1.96255978

20 1.805502468

25 1.65

30 1.498198198

35 1.352867595

40 1.215877226

45 1.087758933

50 0.969656098

55 0.861876616

60 0.764269249

65 0.678039091

70 0.601275761

75 0.532704403

80 0.471994173

After the device enters Standby mode, the GPIO state cannot be maintained. The IO latch circuit can maintain the
PF12 state to ensure that the battery power supply state can be maintained after entering Standby mode.

When GPIO PH10 rises, PF12 outputs 1/0 and the status will be latched.

For example, in the following command, PF12 outputs 1 and is latched.
$ gpioset 5 12=1;gpioset 7 10=0;sleep 0.0001;gpioset 7 10=1;sleep 0.0001;gpioset 7 10=0

For example, in the following command, PF12 outputs 1 and is latched.

4.12. Hardware version

The device provides a queryable hardware version. The hardware version is obtained by reading the resistance value of the
hardware configuration through ADC.

Hardware resource list:
Pin Name Description Remarks

PA1 Hardware version ADC acquisition pin
Device Node:
/sys/bus/iio/devices/iio:device1/in_voltage3_raw
/sys/bus/iio/devices/iio:device1/in_voltage_scale

GV850 Software Development Guide

62

Voltage calculation method:
Volt=scale*raw
Unit: mV

Voltage value range:
[1300,1475] corresponds to R1.03
[1125,1300] corresponds to R1.04
[950,1125] corresponds to R1.05
[775, 950] corresponds to R1.06

Example:
$ cat /sys/bus/iio/devices/iio:device1/in_voltage_scale
0.805664062
$ cat /sys/bus/iio/devices/iio:device1/in_voltage3_raw
1500

0.805664062 * 1500 = 1208 is in the range of [1125,1300], indicating that the current hardware version is R1.04.

GV850 Software Development Guide

63

5. System Sleep

5.1. ST official description

This section introduces the low-power design of the stm32mp133 platform and the control methods for entering
low-power. CPU provides multiple energy consumption operation modes,

The wake-up sources supported in each mode are different, as shown in the following table,

That is to say, the low-power mode CPU can enter depends on the wake-up source required by the application
scenario,

GV850 Software Development Guide

64

According to the GV850 specifications and application scenarios, it is required to realize modes LPLV-STOP/LPLV-STOP2 and
Off/VBAT. OpenSTLinux implements a power management mechanism, as shown in the following figure,

GV850 Software Development Guide

65

Only by using the provided Linux sysfs interface, the configuration and enabling/disabling of wake-up sources and initiating
of state/mode switchover request can be done. By calling the PWR driver to control the hardware PWR, adjust the
VDDCORE and VDDCPU voltages according to the following table. After both voltages meet the conditions, the CPU as a
whole can enter the corresponding energy consumption state.

Due to differences in power management hardware between GV850 and the official demo board, GV850 uses separate
components instead of power management IC (PMIC), and GPIO is used for PWR control instead of I2C interface. Therefore,
GPIO needs to be adapted and adopted in the PWR driver.

GV850 Software Development Guide

66

5.2. Device wakeup source

The mode that the device enters when it goes into sleep mode depends on the instruction to enter sleep mode and
the currently enabled wakeup source.
Based on common usage scenarios, GV850 supports multiple wakeup sources in three low-power modes, as listed
below:

Name
GPIO name

Type Supported sleep
modes

Support
interrupt
detection

Remark

RTC - Inside the
CPU

Stop,Standby - The default value is enabled.

UART - interface Stop - The default setting is disabled.
You need to enable it first. See
below for the method.

LTE GPIO PB7 External
modules

Stop
V1.04 hardware
version supported.

Yes
Supported by
V1.04
hardware
version.

LTE module RI event.

USB GPIO PI2 interface Stop,Standby - USB plug/unplug detection, Edge
trigger.

CAN GPIO PG1 External
modules

Stop
Yes

Connect CAN OBD OUT2 PIN.

BLE GPIO PG4 External
modules

Stop
Yes

Bluetooth module events.

IMU GPIO PC13 External
modules

Stop,Standby
Yes

SPI INT1 interrupt.

IGN GPIO PI3 interface Stop,Standby Yes IGN signal input, Edge trigger
wakeup.

POWER GPIO PI1 interface Stop,Standby No External power
connection/disconnection
detection, Edge trigger wake-up.

IO
Input

GPIO PA3 interface Stop,Standby Yes
Supported by
V1.04
hardware
version.

DIN2 of 16PIN interface. Interrupt
uses GPIO PD9.

Button GPIO PH6 interface Stop Yes button.

The current consumption results of the GV850 device in LPLV-Stop2 or Standby mode are shown in the following

DELL
V1.03

DELL
V1.03

DELL
V1.03

GV850 Software Development Guide

67

table, with no other interfaces or peripherals enabled by default:

Memory type Memory model Power consumption: High -> Low

Wake up quickly,
the system
continues to run

Wake up quickly, the
system continues to run

Slow wake-up,
system restart

LPLV-Stop2 Standby with DDR SR Standby w/o DDR SR

DDR3L IMD128M16R322J8LY 12V-2.1mA 12V-1.4mA 12V-620uA

3.8V-5.6mA 3.8V-3.6mA 3.8V-800uA

The internal battery (3.8V) leakage current is 4uA when the device is turned off.

The STM32MP133 platform function and mode dependency table is as follows:

As can be seen from the above table,

LPLV-Stop2 mode features:
GPIO and SPI data/status will be maintained during sleep. This means that the GPIO status remains unchanged after
entering sleep mode, and the G-sensor of the SPI bus continues to work after waking up;
All GPIOs can be used as interrupt wakeup sources;

Standby mode features:
GPIO and SPI data/status cannot be maintained during sleep. This means that after entering sleep, the GPIO status
will be restored to the default status.
Only 6 special GPIOs (PA3, PC13, PI1, PI2, PI3, PF8) can be used as interrupt wakeup sources;

Under the current default wakeup source of the device, using mem and poweroff will enter the Standby mode. The
DDR SR control effect is as follows:

command DDR Power Supply Awakening state feature

mem 1: Keep the power on The system wakes up and Fast startup, high power consumption

GV850 Software Development Guide

68

runs directly.

0: Do not keep power
on

The system wakes up but
does not function properly

Abnormal use

poweroff 1: Keep the power on System wake-up and reboot Slow startup, system is normal, power
consumption is not the lowest

0: Do not keep power
on

System wake-up and reboot Slow startup, normal system, lowest
power consumption

The normal command combination is the mem command with DDR power supply, and the poweroff command with
DDR power off.

As can be seen from the above, Standby has two modes: Standby with DDR SR and Standby w/o DDR SR. The
difference between the two is whether the memory DDR keeps powered on and self-refreshed after entering the
Standby mode, which will determine the current consumption and the wake-up speed.

GV850 achieves compatibility between Standby and two modes through DDR latch control circuit.

When PE5 rises, PG0 outputs 1, and the power supply to DDR is controlled through NRST.
$ gpioset 6 0=1;gpioset 4 5=0;sleep 0.0001;gpioset 4 5=1;sleep 0.0001;gpioset 4 5=0

After entering Sandby, DDR will maintain power supply and self-refresh, and the system will resume operation after
waking up.
$ echo mem > /sys/power/state
[875.043491] PM: suspend entry (deep)
[875.055564] Filesystems sync: 0.009 seconds
[875.066293] Freezing user space processes ... (elapsed 0.001 seconds) done.
[875.073619] OOM killer disabled.
[875.076780] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
[875.084108] printk: Suspending console(s) (use no_console_suspend to debug)

When PE5 rises, PG0 outputs 0 and the power supply to DDR is controlled by PWR_NRST.
$ gpioset 6 0=0;gpioset 4 5=0;sleep 0.0001;gpioset 4 5=1;sleep 0.0001;gpioset 4 5=0

After entering Standby, DDR will stop supplying power and can enter a lower power consumption state. However, the
system will be reset after waking up.
$ poweroff
Stopping factorytest: start-stop-daemon: warning: killing process 189: No such process
killall: factorytest: no process killed
Failed
Stopping batterymgr: OK
stop
Stopping gpsd: OK
Stopping dropbear sshd: OK
Stopping network: OK

GV850 Software Development Guide

69

Stopping bluetoothd: OK
Stopping tee-supplicant: FAIL
Stopping system message bus: done
Saving random seed: OK
stop
Stopping klogd: OK
Stopping syslogd: OK
umount: tmpfs busy - remounted read-only
umount: devtmpfs busy - remounted read-only
[935.611223] UBIFS (ubi0:3): background thread "ubifs_bgt0_3" stops
The system is going down[935.621113] watchdog: watchdog0: nowayout prevents watchdog being stopped!
NOW!

Sent SIGTE[935.629251] watchdog: watchdog0: watchdog did not stop!
RM to all processes
Sent SIGKILL to all proce[937.658604] reboot

Check the default wakeup sources enabled by the system, which are wakeup0, wakeup1 and wakeup2.
$ ls -la /sys/class/wakeup/
lrwxrwxrwx wakeup0 -> ../../devices/platform/soc/5c004000.rtc/wakeup/wakeup0
Lrwxrwxrwx wakeup1 -> ../../devices/platform/soc/5c004000.rtc/rtc/rtc0/alarmtimer.0.auto/wakeup/wakeup1
lrwxrwxrwx wakeup2 -> ../../devices/platform/wakeup/wakeup/wakeup2

You can further view the name of each wake-up source.
$ cat /sys/class/wakeup/wakeup0/name
5c004000.rtc

$ cat /sys/class/wakeup/wakeup1/name
alarmtimer.0.auto

$ cat /sys/class/wakeup/wakeup2/name
wakeup

After enabling other wakeup sources, such as UART, you can see the newly added wakeup sources wakeup4 and
wakeup5.
$ ls -la /sys/class/wakeup/

lrwxrwxrwx wakeup0 -> ../../devices/platform/soc/5c004000.rtc/wakeup/wakeup0
lrwxrwxrwx wakeup1 -> ../../devices/platform/soc/5c004000.rtc/rtc/rtc0/alarmtimer.0.auto/wakeup/wakeup1
lrwxrwxrwx wakeup2 -> ../../devices/platform/wakeup/wakeup/wakeup2
lrwxrwxrwx wakeup4 -> ../../devices/platform/soc/40010000.serial/tty/ttySTM0/wakeup4
lrwxrwxrwx wakeup5 -> ../../devices/platform/soc/40010000.serial/wakeup/wakeup5

GV850 Software Development Guide

70

5.3. RTCWake-up

It is enabled by default. By using the rtcwake tool, scheduled wake-up can be completed. The usage method is as follows:
Check the current system time,

$ date
Wed Sep 27 14:36:57 UTC 2023

Initiate sleep and wake up at 14:39,
$ rtcwake -t `date -d 14:39 +%s` -m mem -d /dev/rtc0
wakeup from "mem" at Wed Sep 27 14:38:58 2023
[825.648590] PM: suspend entry (deep)
[825.651151] Filesystems sync: 0.000 seconds
[825.662977] Freezing user space processes ... (elapsed 0.001 seconds) done.
[825.670398] OOM killer disabled.
[825.673390] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
[825.680988] printk: Suspending console(s) (use no_console_suspend to debug)

Or directly specify the sleep interval,
$ rtcwake -s 60 -m mem -d /dev/rtc0
wakeup from "mem" at Sat Jan 1 22:54:38 2000
[27.544938] PM: suspend entry (deep)
[27.547565] Filesystems sync: 0.000 seconds
[27.559313] Freezing user space processes ... (elapsed 0.001 seconds) done.
[27.566787] OOM killer disabled.
[27.569771] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
[27.577385] printk: Suspending console(s) (use no_console_suspend to debug)

Will wake up after 60 seconds of sleep by itself and return to the system command prompt.
[27.584948] inv-CPU-iio-spi spi0.0: icm42600 suspend
[27.588715] dwc2 49000000.usb-otg: suspending usb gadget g_ether
[27.593181] Disabling non-boot CPUs ...
[27.597019] dwc2 49000000.usb-otg: resuming usb gadget g_ether
[27.602441] nand: SDR timing mode 4 not acknowledged by the NAND chip
[27.604035] inv-CPU-iio-spi spi0.0: icm42600 resume
[27.635996] OOM killer enabled.
[27.639113] Restarting tasks ... done.
[27.657140] PM: suspend exit
root@Queclink-GV850:~#

Enter Standby w/o DDR SR mode and test RTC wakeup as follows:

Use the rtcwake tool with the parameter –m on to start a 20 second timer. Do not exit the program, otherwise the
timer will be turned off, so run it in the background.
$ rtcwake -s 20 -m on -d /dev/rtc0 &

Use the power off command to initiate low power consumption.

GV850 Software Development Guide

71

$ gpioset 6 0=0;gpioset 4 5=0;sleep 0.0001;gpioset 4 5=1;sleep 0.0001;gpioset 4 5=0
$ poweroff
Stopping factorytest: start-stop-daemon: warning: killing process 189: No such process
killall: factorytest: no process killed
Failed
Stopping batterymgr: killall: batterymgr: no process killed
Failed
stop
Stopping gpsd: OK
Stopping dropbear sshd: OK
Stopping network: OK
Stopping bluetoothd: OK
Stopping tee-supplicant: FAIL
Stopping system message bus: done
Saving random seed: OK
stop
Stopping klogd: OK
Stopping syslogd: OK
umount: tmpfs busy - remounted read-only
umount: devtmpfs busy - remounted read-only
[576.839871] UBIFS (ubi0:3): background thread "ubifs_bgt0_3" stops
The system is going down[576.849778] watchdog: watchdog0: nowayout prevents watchdog being stopped!
NOW!

Sent SIGTER[576.857991] watchdog: watchdog0: watchdog did not stop!
M to all processes
Sent SIGKILL to all proce[578.886453] reboot

After the timeout wake-up, the system restarts and prints the boot log.
NOTICE: CPU: STM32MP133A Rev.Y
NOTICE: Model: STMicroelectronics custom STM32CubeMX board -
openstlinux-5.15-yocto-kirkstone-mp1-v22.11.23
NOTICE: BL2: v2.6-stm32mp1-r2.0(release):()
NOTICE: BL2: Built : 03:57:39, Mar 8 2024
NOTICE: BL2: Booting BL32
…

5.4. UART Wake-up

It is disabled by default. Taking the system console UART device ttySTM0 as an example to show the enabling method,
Check the default value,

$ cat /sys/devices/platform/soc/40010000.serial/power/wakeup
disabled

GV850 Software Development Guide

72

$ cat /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup
disabled

Modify the wake-up source to enable state,
$ echo enabled > /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup
$ echo enabled > /sys/devices/platform/soc/40010000.serial/power/wakeup

Initiate a sleep request,
$ echo mem > /sys/power/state
[192.680917] PM: suspend entry (deep)
[192.695818] Filesystems sync: 0.012 seconds
[192.699298] Freezing user space processes ... (elapsed 0.001 seconds) done.
[192.706747] OOM killer disabled.
[192.709813] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
[192.717339] printk: Suspending console(s) (use no_console_suspend to debug)
During sleep, if there are no other wake-up sources, it will wake up when UART receives data and return to the system
command line login.
[192.725008] inv-CPU-iio-spi spi0.0: icm42600 suspend
[192.728334] dwc2 49000000.usb-otg: suspending usb gadget g_ether
[192.732793] Disabling non-boot CPUs ...
[192.736417] dwc2 49000000.usb-otg: resuming usb gadget g_ether
[192.741961] nand: SDR timing mode 4 not acknowledged by the NAND chip
[192.743202] inv-CPU-iio-spi spi0.0: icm42600 resume
[192.775183] OOM killer enabled.
[192.778435] Restarting tasks ... done.
[192.783454] PM: suspend exit
^Z
Welcome to Buildroot
Queclink-GV850 login:

After the test is completed, restore the wakeup source to the disabled state. The device cannot enter a higher sleep
level when the UART wakeup source is enabled.
$ echo disabled > /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup
$ echo disabled > /sys/devices/platform/soc/40010000.serial/power/wakeup

6.3 USB Wake-up

Supports Stop and Standby modes. When in low power mode, it will wake up when a USB Type-A port is plugged in
and 5V voltage is detected on VBUS.

In Standby with DDR SR mode, the test process is as follows:
Unplug the general USB Type-A port of the cable and keep the USB to serial port connection.

$ gpioset 6 0=1;gpioset 4 5=0;sleep 0.0001;gpioset 4 5=1;sleep 0.0001;gpioset 4 5=0

GV850 Software Development Guide

73

$ echo mem > /sys/power/state

At this time, the system enters sleep mode. After plugging the general USB Type-A port into the R&D coCPUter, the
device is awakened.

6.4 G-Sensor Wake-up

Support Stop and Standby modes. G-sensor devices support multiple detection modes, taking vibration wake-up
WOM (Wake On Motion) as an example.

Enable WOM. For detailed meaning of the command, see the "Interface" -> "IMU" section.
$ cd /sys/bus/iio/devices/iio:device2;echo 1 > event_motion_detect_enable;echo 118 > debug_reg_write_addr; echo
0 > debug_reg_write;echo 101 > debug_reg_write_addr; echo 0 > debug_reg_write;echo 118 >
debug_reg_write_addr;echo 4 > debug_reg_write;echo 74 > debug_reg_write_addr;echo 20 > debug_reg_write;echo
75 > debug_reg_write_addr;echo 20 > debug_reg_write;echo 76 > debug_reg_write_addr;echo 20 >
debug_reg_write;cd -
[731.502424] inv_CPU: Motion Detect Enabled

Entering Standby w/o DDR SR sleep
$ poweroff

Then pick up the device and shake it to wake it up. After the test is completed, you can turn off the WOM function of
the G-sensor.
$ cd /sys/bus/iio/devices/iio:device2;echo 0 > event_motion_detect_enable;cd -
[900.148720] inv_CPU: Motion Detect Disabled

6.5 IGNWake-up

Support Stop and Standby modes. When entering low power mode, the IGN signal connected to 12V high level will
wake up the device. If you want to enter Stop mode, you need to enable some corresponding wake-up sources. The
chip decides to enter the corresponding sleep mode according to the level of the wake-up source.

Enable serial terminal wake-up,

$ echo enabled > /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup
$ echo enabled > /sys/devices/platform/soc/40010000.serial/power/wakeup

Entering the Stop mode of sleep,
$ echo mem > /sys/power/state

Manually short the 10-pin connector IGN line to the 12V power supply. The system will be awakened and the
operating system will be restored to the state before hibernation.

GV850 Software Development Guide

74

NRST controls the power supply to DDR and can maintain memory power supply when power is off.
$ gpioset 6 0=1;gpioset 4 5=0;sleep 0.0001;gpioset 4 5=1;sleep 0.0001;gpioset 4 5=0

Enter Standby w/o DDR SR sleep mode,
$ echo mem > /sys/power/state
Manually short the 10-pin connector IGN line to the 12V power supply. The system will wake up and the device
system will restart.

6.6 POWER Wake-up

Supports Stop and Standby modes. Use the internal battery as the power source and turn off the external power
source. After entering low-power mode, connecting an external power source will wake up the device. When testing
this item, you need to unplug the USB Type-A port connecting the device to the development coCPUter and keep
the USB to serial port connection. Enter commands through the serial port.

For the Stop sleep mode test command, refer to IGN wake-up.

First, connect the battery to the device. Turn on the battery power enable. Then enter the Standby with DDR SR sleep
mode. The test process is as follows.

Open the battery,
$ gpioset 5 12=1;gpioset 7 10=0;sleep 0.02;gpioset 7 10=1;sleep 0.02;gpioset 7 10=0

NRST controls the power supply to DDR and can maintain memory power supply when power is off
$ gpioset 6 0=1;gpioset 4 5=0;sleep 0.0001;gpioset 4 5=1;sleep 0.0001;gpioset 4 5=0

Enter Standby with DDR SR sleep mode,
$ echo mem > /sys/power/state
Manually short the external power supply positive terminal (10-pin connector DCIN line) with the 12V power supply.
The system will be awakened and the operating system will be restored to the state before hibernation.

6.7 IO Input Wake-up

Supports Stop and Standby modes. The wake-up pin is GPIO PA3. The corresponding terminal is DIN2. For test
commands, refer to IGN wake-up. Manually short-circuit the DIN2 terminal line (16-pin connector DIN2 line) with the
ground line. At this time, the system will be awakened and the operating system will be restored to the state before
hibernation.

6.8 Button Wake-up

Support Stop mode. When in low power mode, press the button to wake up.
Enable serial port wakeup, which allows the mem command to put the system into stop mode. The test process is as
follows.
Enable the serial port wakeup source, so that the mem command enters the Stop sleep mode.

GV850 Software Development Guide

75

$ echo enabled > /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup
$ echo enabled > /sys/devices/platform/soc/40010000.serial/power/wakeup

Go to sleep,
$ echo mem > /sys/power/state

After entering sleep mode, you can wake up the system by manually pressing a button.

6.9 CAN OBD module Wake-up

Supports Stop mode. When entering low power mode, sending J1939 data packets in the CAN BUS1 bus of the CAN
module can wake up the CAN module, and the CAN module wakes up the CPU.

The test method is as follows,

First put the CAN OBD module into sleep mode, and then put the CPU system into Stop mode using the following
command:
$ echo enabled > /sys/devices/platform/soc/40010000.serial/tty/ttySTM0/power/wakeup
$ echo enabled > /sys/devices/platform/soc/40010000.serial/power/wakeup
$ echo mem > /sys/power/state
[1837.571084] PM: suspend entry (deep)
[1837.583261] Filesystems sync: 0.009 seconds
[1837.586752] Freezing user space processes ... (elapsed 0.001 seconds) done.
[1837.594050] OOM killer disabled.
[1837.597421] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
[1837.604814] printk: Suspending console(s) (use no_console_suspend to debug)

When a J1939 data packet is sent in the CAN BUS1 bus of the CAN module and the CAM module wakes up, the GPIO
PG1 input level change will wake up the CPU system from Stop mode.
[180.861061] inv-CPU-iio-spi spi0.0: icm42600 suspend
[180.865177] dwc2 49000000.usb-otg: suspending usb gadget g_ether
[180.869810] Disabling non-boot CPUs ...
[180.873631] dwc2 49000000.usb-otg: resuming usb gadget g_ether
[180.879675] nand: SDR timing mode 4 not acknowledged by the NAND chip
[180.881261] inv-CPU-iio-spi spi0.0: icm42600 resume
[180.913179] OOM killer enabled.
[180.916295] Restarting tasks ... done.
[180.936626] PM: suspend exit

GV850 Software Development Guide

76

6. Example of Codes

In order to facilitate developers to familiarize themselves with and use the modules on the device, example source code for
some module interfaces is provided for reference.

6.1. utils_info

Query and print product information, such as SN, MCUID and hardware version information.
$ utils_info
SN:***
MCUID:313538323532511100270024
HW:HWR103

6.2. example_modem_at

It demonstrates how to send commands to the LTE module and receive response data. For more information on the
module, please refer to the "LTE" section.
The method is as follows, with the main steps being to set baud rate, enable power supply, power on the module, turn off
command echo and test command:

$ stty -F /dev/ttySTM3 ispeed 115200 ospeed 115200 cs8 -icrnl -isig -icanon -echo -echoe
$ gpioset 0 15=1
$ gpioset 5 5=1
$ sleep 3
$ gpioset 5 5=0
Use the tool to send the ATE0 command to turn off echo,
$ example_modem_at ATE0
ATE0

OK

Send the AT+GMR command to query the firmware version of the LTE module,
$ example_modem_at AT+GMR
EG915UEUABR02A05M08

OK

GV850 Software Development Guide

77

6.3. example_formula_can

It demonstrates how to send commands to the CAN module and receive response data. For more information on the
module, please refer to the "CAN" section.

Since the CANOBD software module is newly developed, it is recommended to use the CANOBD UBUS interface for testing
first. Refer to the "Canobd" section in the "Queclink Software Module" chapter.

The method is as follows, with the main steps being to set baud rate, enable power supply and test command:
$ stty -F /dev/ttySTM7 ispeed 115200 ospeed 115200 cs8 raw
$ gpioset 6 3=1
$ gpioset 0 4=1

Embedded commands inside the tool, parameters (OR values) can be used to control the sequence of the commands to be
executed,
$ example_external_can
Usage:

example_external_can <testing mask>

Testing mask:
-Raw frame send, [addr cmd D1 .. Dn] no need prefix, suffix and SK, --0x00
-Read SN, --0x01
-Read version, --0x02
-Read boot version, --0x04
-Read INPUT_3 voltage, --0x08
-Read V_IN voltage, --0x10
-Enter develop mode, --0x20
-CAN loop test, --0x40
-K-Line test, --0x80
-GPIO output functions settings, --0x100
-IO test O1,O2,O3 activated, --0x200
-IO test O2 activated, --0x400
-IO test LED green on, --0x800
-IO test LED red on, --0x1000
-IO test all disactivated, --0x2000
-Read THR support flag, --0x4000
-Wakeup CAN module , --0x8000

Execute Read version command,
$ example_external_can 0x02
STEP
Read version, write len=6:
F5 B3 10 01 3B F6
read len=10:
F5 B4 14 01 49 30 11 00 AC F6

GV850 Software Development Guide

78

FW Revision:3.017

Execute Read version and CAN loop test commands,
$ example_external_can 0x42
STEP
Read version, write len=6:
F5 B3 10 01 3B F6
read len=10:
F5 B4 14 01 49 30 11 00 AC F6
FW Revision:3.017

STEP
CAN loop test, write len=9:
F5 B3 43 02 00 80 10 77 F6
read len=8:
F5 B4 22 3A CC F2 31 F6

Loop to read the serial port data of the CAN module,
$example_external_can 0x0
Listen can communication interface...
select timeout 10.0 sec

Send the original data frame of CAN module,
$ example_external_can 0x0 0x3b 0x10 0x01
STEP
Raw frame send, [addr cmd D1 .. Dn] no need prefix, suffix and SK, write len=6:
F5 3B 10 01 B3 F6
read len=8:
B4 14 01 49 30 11 00 AC

6.4. example_gsensor

Demonstrates how to provide a sysfs interface through the driver to complete the initialization, data collection, and
command testing of the IMU device:
$ example_gsensor
Usage:

test-sensors-sysfs [-d <device_no>] [-a <rate>] [-g <rate>] [-c]

Options:
-h, --help

Show this help and quit.
-d, --device

Choose device by numero.
-a, --accel

GV850 Software Development Guide

79

Turn accelerometer on with ODR (Hz).
-g, --gyro

Turn gyroscope on with ODR (Hz).
-c, --convert

Show data after unit conversion (m/s^2, rad/s)
-b, --batch

Set batch timeout in ms.
Version:

1.1.0

For example, the sampling frequency is 100Hz,
$ example_gsensor -d 2 -a 100 -g 100
…
Accel body (LSB) , +113, +13, +4077, 17478588377202, 176.818, 1.128
Gyro body (LSB) , -4, +5, +1, 17478588342172, 16.954, 1.163
Accel body (LSB) , +114, +13, +4082, 17478598377202, 10.000, 1.338
Gyro body (LSB) , -3, +5, +1, 17478598307142, 9.965, 1.408
Accel body (LSB) , +111, +8, +4084, 17478608377202, 10.000, 1.176
Gyro body (LSB) , -5, +6, +1, 17478608272112, 9.965, 1.281
Accel body (LSB) , +111, +12, +4094, 17478618377202, 10.000, 1.226
Gyro body (LSB) , -4, +4, +1, 17478618237082, 9.965, 1.366
Accel body (LSB) , +114, +14, +4092, 17478628377202, 10.000, 1.109
Gyro body (LSB) , -4, +5, +0, 17478628202052, 9.965, 1.284

Sampling results after unit conversion,
$ example_gsensor -d 2 -a 100 -g 100 -c
…
Accel body (m/s^2), +0.270545, +0.021548, +9.761160, 17568890862843, 169.503, 1.343
Gyro body (rad/s), -0.005326, +0.005326, +0.001065, 17568890827813, 9.549, 1.378
Accel body (m/s^2), +0.270545, +0.028730, +9.806650, 17568900862843, 10.000, 1.376
Gyro body (rad/s), -0.004261, +0.005326, +0.001065, 17568900792783, 9.965, 1.446
Accel body (m/s^2), +0.268151, +0.021548, +9.782708, 17568910862843, 10.000, 1.426
Gyro body (rad/s), -0.005326, +0.005326, +0.000000, 17568910757753, 9.965, 1.531
Accel body (m/s^2), +0.265756, +0.023942, +9.787497, 17568920862843, 10.000, 1.423
Gyro body (rad/s), -0.005326, +0.006392, +0.000000, 17568920722723, 9.965, 1.563

6.5. example_ble

It demonstrates how to send commands to the BLE module and receive response data. For more information on the
module, please refer to the "BLE" section.
The method is as follows, with the main steps being to enable power supply and test command:
$ gpioset 4 15=1

GV850 Software Development Guide

80

The example_ble tool help information is as follows.
$ example_ble -h
Usage:

./example_ble <BLE command string>
-r Loop read BLE message.
-t BLE cmd terminal.

Example:
./example_ble AT+X=10,0
./example_ble -r
./example_ble -t

Use the tool to send the AT+F=1 command to read the BLE firmware version.
$ example_ble AT+F=1
Send Commond: AT+F=1
Recv Response: +ACK:F,1,01.01,OK

Query the BOOT APP version of the BLE module,
$ example_ble AT+F=17,0
Send Commond: AT+F=17,0
Recv Response: +ACK:F,17,0,GV850_BT_BOOTR00A01V01,OK

$ example_ble AT+F=17,1
Send Commond: AT+F=17,1
Recv Response: +ACK:F,17,1,GV850_BT_R00A01V01,OK

For efficient testing, example_ble can support AT command line mode. In this mode, you can input continuously and
get the returned results. Ctrl+Backspace can delete the input content, and Ctrl+C can exit the program.

This mode can be used to monitor Bluetooth active reporting events or transparent transmission messages.When
using a serial terminal connection, if the Enter key is displayed as ^M and the carriage return is not reached, press the
Ctrl+Enter key combination.
example_ble -t
at+f=17,1
+ACK:F,17,1,GV850_BT_R00A01V01,OK
at+f=17,0
+ACK:F,17,0,GV850_BT_BOOTR00A01V01,OK
at+f+18 Error input, After entering a newline, enter again.

at+f=18
+ACK:F,18,1,49A7101029DF,7805413D60E0,OK

at+x=10,0
+ACK:X,10,0,1,OK Query the connect status.

GV850 Software Development Guide

81

6.6. example_input_intr

Demonstrates how to perform interrupt detection. GPIO PH6, PI3, PD9, PG4, PG1 are registered as Input devices
through the gpio-keys driver, and the level change events of these pins can be received through /dev/input/event0.
$ cat /proc/interrupts |grep stm32gpio
68: 0 stm32gpio 1 Edge Wakeup-PG1
69: 0 stm32gpio 3 Edge Wakeup-PI3
70: 0 stm32gpio 4 Edge Wakeup-PG4
71: 0 stm32gpio 6 Edge Wakeup-PH6
72: 5 stm32gpio 7 Edge Wakeup-PB7
73: 0 stm32gpio 9 Edge Wakeup-PD9
…

Start the detection program and read the /dev/input/event0 node. When the above interrupt occurs, a key input
event will be generated.
$ example_input_intr

When the button is pressed/released, the following will be printed, and the corresponding pin is PH6.
type:1, code:260, value:1
type:1, code:260, value:0

When the IGN signal is ON/OFF, the following will be printed, and the corresponding pin is PI3.
type:1, code:258, value:1
type:1, code:258, value:0

When DIN2 is triggered/contacted at a low level, the following will be printed, and the corresponding pin is PD9.
type:1, code:262, value:1
type:1, code:262, value:0

When the Bluetooth module performs interaction, the following printout will be displayed, and the corresponding pin
is PG4.
type:1, code:259, value:0
type:1, code:259, value:1

When the CAN module enters sleep mode and exits sleep mode, the following information will be printed, and the
corresponding pin is PG1.
type:1, code:257, value:0
type:1, code:257, value:1

6.7. gpiosnoop

This tool is used to get the output value of the GPIO port in the output state. For example, after setting the value of

GV850 Software Development Guide

82

GPIO PA4, read the value set by PA4 without changing the output mode of PA4. Unlike gpioget, it does not change
the input and output direction of the GPIO port.
$ gpiosnoop 0 4
0

or
$ gpiosnoop gpiocchip0 4
0

GV850 Software Development Guide

83

7. Queclink Software Modules Queclink Software Modules

In order to speed up the development progress of developers on this hardware platform and reduce the
development difficulty, Queclink will gradually complete the basic, public code development work. This part of the
work mainly includes the maintenance of the compilation environment, C language coding standards, C language
basic library usage standards, device storage and directory planning, basic C tool library, complete log library, device
system, basic service module, hardware module business encapsulation library, etc.

Our goal is to build a standardized, stable, reasonable, and sustainable Liunx embedded development platform. This
goal is being continuously promoted, and service modules for some modules are currently provided.
In order to accelerate the development progress of developers on this hardware platform and reduce the
development difficulty. Queclink will gradually complete the basic, public code development work. This part of the
work mainly includes the maintenance of the compilation environment, C language coding standards, C language
basic library usage standards, device storage and directory planning, basic C tool library, complete log library, device
system, basic service module, hardware module business encapsulation library, etc.

Our goal is to build a standardized, stable, reasonable, and sustainable Liunx embedded development platform. This
goal is being continuously promoted, and service modules for some modules are currently provided.

7.1. Canobd

7.1.1. Introduction to CAN Module

The GV850 series products have a powerful CAN OBD module to support vehicle-mounted
J1939/J1708/FMS/OBD CAN services. Installing the device in the vehicle and connecting it to the vehicle CAN bus can
obtain real-time vehicle operation data, actuator status, fault information, driver information, vehicle behavior
statistics, and driver behavior statistics. This information can be further processed to obtain more use value.

The CAN module supports obtaining data from Tachograph and downloading driving record files. The CAN
module supports the KLine hardware interface and KLine protocol.

The biggest advantage of this CAN module is that it supports a wide range of vehicle models, almost covering
the mainstream models on the market. It not only supports passenger cars but also heavy vehicles such as buses and
trucks. Secondly, the protocol design of this module is more suitable for expansion and updating. It is a very excellent
vehicle-mounted CAN bus module.

In order to facilitate developers to use the module more deeply, Queclink provides the module's operation
library and basic service module. They are canobd support library and canobd business software. The canobd
support library and business software are written in C code. The canobd support library is provided in the form of a
dynamic library. The canobd business code provides a UBUS bus call interface to the outside world. The overall
structure diagram of canobd is shown in the figure below.

The GV850 series products have a powerful CAN OBD module to support vehicle-mounted
J1939/J1708/FMS/OBD CAN services. Installing the device in the car and connecting it to the vehicle CAN bus can
obtain real-time vehicle operation data, actuator status, fault information, driver information, vehicle behavior
statistics and driver behavior statistics. This information can be further processed to obtain more use value.

GV850 Software Development Guide

84

The CAN module supports obtaining data from Tachograph and downloading driving record files. The CAN
module supports KLine hardware interface and KLine protocol.

The biggest advantage of this CAN module is that it supports a large number of models, almost covering the
mainstream models on the market. It not only supports passenger cars but also heavy vehicles such as buses and
trucks. Secondly, the protocol design of this module is more suitable for expansion and updating. It is a very excellent
vehicle-mounted CAN bus module.

In order to facilitate developers to use the module more deeply, Queclink provides the module's operation
library and basic service module. They are canobd support library and canobd business software respectively. The
canobd support library and business software are written in C code. The canobd support library is provided in the
form of a dynamic library. The canobd business code provides a UBUS bus call interface to the outside world. The
overall structure diagram of canobd is shown in the figure below.

The basic usage process of the CAN module is shown in the figure below.
The basic usage process of the CAN module is shown in the figure below.

GV850 Software Development Guide

85

7.1.2. CAN module automotive parameter table

The CAN module supports a lot of vehicle parameters. For details, refer to the "[24-01-03] CAN-Logistic v3 protocol
XON-XOFF.pdf" manual "Inquiries about car's parameters from the CAN-bus" section. The following lists canobd
Supports vehicle parameters that are already supported by the library.

The CAN module supports a lot of vehicle parameters. For details, refer to the "[24-01-03] CAN-Logistic v3 protocol
XON-XOFF.pdf" manual "Inquiries about car's parameters from the CAN-bus" section. The The following lists the
vehicle parameters that the canobd support library already supports.
Car parameter table 1:
Car parameter table 1:

Parameter name describe

GV850 Software Development Guide

86

ignition_key Ignition status

total_distance_unit Total mileage unit

total_distance Total mileage

total_fuel_used Total fuel consumption

fuel_level_in_liters Fuel level (liters)

fuel_level_in_percents Fuel remaining (percentage)

range Remaining mileage

vehicle_speed Car speed

engine_speed Engine speed

accelerator_pedal_pressure Accelerator pedal pressure

brake_pedal_pressure Brake pedal pressure

engine_coolant_temperature Engine coolant temperature

total_engine_hours Total engine hours

total_driving_time Total driving time

total_engine_idle_time Total engine idling time

total_idle_fuel_used Total idle fuel usage

axle_weight Axle load

tachograph_information Speed recorder information

detailed_information Vehicle details

lights Light status

doors Door status

rapid_brakings Emergency braking times

rapid_accelerations Rapid acceleration times

total_vehicle_overspeed_time Total time of vehicle speeding

total_vehicle_engine_overspeed_time Total time the vehicle's engine is overspeeding

sw_version reserve

battery_level_in_percents Electric vehicle battery charge percentage

gaseous_fuel Gas remaining

battery_charging_status Electric vehicle battery charge status

tacho_all_infor Tachometer information

drivetrain_related_info Transmission system related information

battery_voltage Electric vehicle battery voltage

battery_charging_cycles Electric vehicle battery charging time

total_energry_recuperated Tram Total Power Recovery

battery_temperature Electric vehicle battery temperature

battery_charging_current Electric vehicle battery charging current

battery_power Electric vehicle battery charge

battery_soh Electric vehicle battery health status

total_energy_used Total energy consumption of trams

total_energy_used_when_idling Total energy consumption of electric vehicles at idling

total_energy_charged Total battery charge

tacho_rtc RTC time of the tachometer

GV850 Software Development Guide

87

Car parameter table 2:

Parameter name describe

adblue_level Catalyst fluid volume

axle_weight_1st Axis 1 load

axle_weight_3rd Axis 3 load

axle_weight_4th Axis 4 load

current_fuel_consumption Current fuel consumption

current_fuel_consumption_unit_is_l_per_h Current fuel consumption unit L/h

tachograph_overspeed_indicator Driving Recorder Speeding Indicator

tachograph_vehicle_moving_indicator Driving Recorder Vehicle Driving Indicator

drive_direction_from_tachograph Driving recorder displays driving direction

input3 Input3 analog input signal

engine_braking_factor Engine braking deceleration times

pedal_braking_factor Pedal brake system deceleration times

total_accelerator_kick_downs Total number of downshifts during acceleration

total_effective_engine_speed_time Total effective engine speed time

total_cruise_control_time Total cruise control time

total_accelerator_kick_down_time Total time of acceleration and resistance

total_brake_applies Total brake application

engine_torque Engine torque

outair_tmeperature Outdoor air temperature

diagnastic_trouble_codes Diagnostic Trouble Codes

diagnatic_trouble_codes_format Diagnostic trouble code format

retarder_selection Reducer gear selection

Car parameter table 3:

Parameter name describe

th_driver1_card_number Driver Card 1 Number

th_driver2_card_number Driver Card 2 Number

th_driver1_name Driver 1 Name

th_driver2_name Driver 2 Name

vin Vehicle VIN number

registration_number License plate number

service_distance Distance of service

cold_engine_start_counts Engine Cold Start Count

engine_all_start_counts Engine all start counts

engine_start_by_ign_counts by IGN Launch Engine

driving_time_with_cold_engine Driving time with a cold engine

handbrake_applies_on_ride the handbrake was used

GV850 Software Development Guide

88

Driver Information Card Form:

Parameter name describe

End_Of_Last_Daily_Rest_Period End of the last break of the day

End_Of_Last_Weekly_Rest_Period The last week of break is over

End_Of_Second_Last_Weekly_Rest_Period The second break of the last week is over

Maximum_Daily_Period Maximum daily cycle

Number_Of_Times_9h_Daily_Driving_Times_Exceed Number of times you drive more than 9 hours per day

Number_Of_Used_Reduced_Daily_Rest_Period Use reduces the number of breaks per day

Reaining_Current_Drive_Time Remaining driving time

Reasoning_Time_Until_Next_Break_Or_Rest Time remaining before next break or rest

Duration_Of_Next_Break_Rest Next break time

Reasoning_Time_Of_Current_Break_Rest Next break time

Time_Left_Until_Next_Driving_Period Time remaining until next driving period

Duration_Of_Next_Driving_Period Duration of next driving session

Reasoning_Driving_Time_On_Current_Shift Remaining driving time for the current shift

Time_Left_Until_New_Daily_Rest_Period The rest of the day until the new daily break time

Minimum_Daily_Rest Minimum daily rest time

Remaining_Driving_Time_Of_Current_Week Remaining driving time this week

Time_Left_Until_New_Weekly_Rest_Period Time remaining until the new weekly break

Minmum_Weekly_Rest Minimum weekly rest time

Open_Compensation_In_The_Last_Week Public deductions in the last week

Open_Compensation_In_Weekly_Before_Last Public deductions for the previous week

Open_Compensation_In_2nd_Week_Before_Last Deduction for the first two weeks

Continuous_Driving_Time Additional information (coming soon)

Cumulative_Break_Time Continuous driving time

Current_Duration_Of_Select_Activity Cumulative break time

Accumulated_Driving_Time_Privious_And_Current_We
ek

The current duration of the selected activity

Current_Daily_Driving_Time
Total driving time in the previous week and the current
week

Current_Weekly_Driving_Time Current daily driving time

Cumulative_Uninterrupted_Rest_Time Current weekly driving time

Maximum_Daily_Driving_Time Cumulative uninterrupted rest time

7.1.3. CANOBD Core Interface

CANOBD business service calls the C API function of canobd support library and provides UBUS bus calling method.
The core interface is listed here for quick understanding. If you need more abundant interfaces, please contact
Quecklink.
CANOBD business service calls the C API function of canobd support library and provides UBUS bus calling method.
The core interface is listed here for quick understanding. If you need more abundant interfaces, please contact
Quecklink.

GV850 Software Development Guide

89

7.1.3.1. Get API version

This interface is used to obtain version library information, the interface is get_canobd_api_version , and the
payload is empty.
This interface is used to obtain version library information, the interface is get_canobd_api_version, and the payload is
empty.
Example:
Example:
$ ubus call canobd get_canobd_api_version

7.1.3.2. Raw frame channel

This interface encapsulates the raw frame into a protocol and then transparently transmits it to the CAN module,
and then returns the frame returned by the CAN module. This interface is used for testing and special application
scenarios. Interface action_canobd_raw_frame_send , payload {"frame":[String array]} . The parameters are as shown
in the following table.
This interface encapsulates the raw frame into a protocol and then transparently transmits it to the CAN module, and
then returns the frame returned by the CAN module. This interface is used for testing and special application
scenarios. Interface action_canobd_raw_frame_send, payload {"frame": [String array]}. Parameters are as follows.

name type Remark

frame string array

The request frame is organized according to the CAN module frame
protocol , starting from the address bit, excluding the check bit, and no
escape is required.
The request frame is organized according to the CAN module frame
protocol, starting from the address bit, excluding the check bit, and no
escape is required.

Example:
Example:
$ ubus call canobd action_canobd_raw_frame_send '{"frame":["0xb3", "0x20","0xd7"]}'

7.1.3.3. Query module status

This interface is used to obtain all status information of the CAN module and canobd support library. Interface
get_state , the payload is empty. When carrying {"scope": "String"} payload, the corresponding status can be obtained
separately. The request payload field list is as follows.
This interface is used to obtain all status information of the CAN module and canobd support library. Interface
get_state, the payload is empty. When carrying {"scope": "String"} payload, the corresponding status can be obtained
separately. The request payload field list is as follows.

name type Remark

scope string

sync_state: Get real-time model synchronization status
sync_history_state: Get the established model synchronization state
base_init_info_state: Get the basic configuration and status information
of the module
upgrade_state: Get the upgrade status

GV850 Software Development Guide

90

fireware_state: Get firmware status
module_conf_state: Get module configuration state
car_params_poll_state: Get vehicle parameter polling state
car_base_state: Get vehicle basic information and status

sync_state: Get real-time model synchronization status
sync_history_state: Get established model synchronization status
base_init_info_state: Get basic configuration and status information of
the module
upgrade_state: Get upgrade status
fireware_state: Get firmware status
module_conf_state: Get module configuration status
car_params_poll_state: Get vehicle parameter polling status
car_base_state: Get vehicle basic information and status

Example:
$ ubus call canobd get_state all states
$ ubus call canobd get_state '{"scope": "sync_state"}' synchronization state
$ ubus call canobd get_state '{"scope": "sync_history_state"}' history synchronization state
$ ubus call canobd get_state '{"scope": "base_init_info_state"}' basic information state
$ ubus call canobd get_state '{"scope": "upgrade_state"}' upgrade state
$ ubus call canobd get_state '{"scope": "fireware_state"}' firmware version state
$ ubus call canobd get_state '{"scope": "module_conf_state"}' configuration version state
$ ubus call canobd get_state '{"scope": "car_params_poll_state"}' vehicle parameter polling state
$ ubus call canobd get_state '{"scope": "car_base_state"}' Vehicle and bus state

{
"device_mode": "CANHEX_MODE_OPERATING",
"mode_reason0": "CANHEX_MODE_REASON_NONE",
"mode_reason1": "CANHEX_MODE_REASON_NONE",
"serial_mode": "CANHEX_MODE_SERIAL_XONXOFF",
"protocol_work_mode": "CANHEX_MODE_WORK_WORKING",
"new_firmware_valid": 0,
"new_conf_valid": 0,
"current_conf_valid": 1,
"serial_conf_valid": 1,
"model_id": "004F",
"model_id_state": "SET_BY_SYNC",
"car_name": "Seat Altea (04-)",
"thr_support": 0,
"sn": "3863285",
"event_ack_enable": 0,
"canbus_active_mode": 0,
"fuel_measure_delay": 0,

GV850 Software Development Guide

91

"nonautomatic_sync": 0,
"can1_send_disable": 0,
"uart_tx_wakeup": 0,
"short_wakeup": 0,
"low_power_mode": 1,
"ignore_diagnostic_tools": 0,
"deep_sleep_mode_disable": 0,
"thr_compatibility": 0,
"can2_send_disable": 0 ,
"query_tachograph_mode": 0,
"scope": "base_init_info_state",
"from": "cache",
"rtn": "success"

}
Reply load parameter table:

name
name

type
type

illustrate
Remark

device_mode string

CANHEX_MODE_OPERATING: Operation mode
CANHEX_MODE_TEST: Test mode
CANHEX_MODE_CAN_BUS_SYNC_PROCEED: CAN BUS synchronization
processing status
CANHEX_MODE_DIAG_START: Diagnosis starts
CANHEX_MODE_DIAG_END: Diagnosis ends
CANHEX_MODE_CAN_BUS_SYNC_FAILED: CAN BUS synchronization failed
CANHEX_MODE_FAIL_SAFE: Fail-safe mode

CANHEX_MODE_OPERATING: Operation mode
CANHEX_MODE_TEST: Test mode
CANHEX_MODE_CAN_BUS_SYNC_PROCEED: CAN BUS synchronization
processing status
CANHEX_MODE_DIAG_START: Diagnosis start
CANHEX_MODE_DIAG_END: ​ ​ Diagnosis end
CANHEX_MODE_CAN_BUS_SYNC_FAILED: CAN BUS synchronization failed
CANHEX_MODE_FAIL_SAFE: Fail-safe mode

mode_reason0 string

CANHEX_MODE_REASON_NONE: Module reason register value 0, clear status

CANHEX_MODE_REASON_ONGOING: ongoing state

CANHEX_MODE_REASON_SUCCESS: Success status

CANHEX_MODE_REASON_CAN_BUS_UNKNOWN: CAN BUS is not recognized

CANHEX_MODE_REASON_CAN_BUS_UNCONNECT: CAN BUS is not

GV850 Software Development Guide

92

recognized

CANHEX_MODE_REASON_ANALYSIS: CAN BUS not connected analysis
CANHEX_MODE_REASON_NONE: Module reason register 0 value, clear status

CANHEX_MODE_REASON_ONGOING: In progress status

CANHEX_MODE_REASON_SUCCESS: Success status

CANHEX_MODE_REASON_CAN_BUS_UNKNOWN: CAN BUS is not recognized

CANHEX_MODE_REASON_CAN_BUS_UNCONNECT: CAN BUS is not
recognized

CANHEX_MODE_REASON_ANALYSIS: CAN BUS is not connected to analysis

mode_reason1 string Same as above

serial_mode string

CANHEX_MODE_SERIAL_NONE: Serial port mode, clear status
CANHEX_MODE_SERIAL_XONXOFF: XONXOFF mode
CANHEX_MODE_SERIAL_ASCII: ASCII mode
CANHEX_MODE_SERIAL_CFG_MODE:
CANHEX_MODE_SERIAL_WORK_MODE:

CANHEX_MODE_SERIAL_NONE: Serial port mode, clear state
CANHEX_MODE_SERIAL_XONXOFF: XONXOFF mode
CANHEX_MODE_SERIAL_ASCII: ASCII mode
CANHEX_MODE_SERIAL_CFG_MODE:
CANHEX_MODE_SERIAL_WORK_MODE:

protocol_work_mode string

CANHEX_MODE_WORK_NONE: Clear status
CANHEX_MODE_WORK_WORKING: Working mode
CANHEX_MODE_WORK_CFG_MODE: Configuration mode

CANHEX_MODE_WORK_NONE: Clear status
CANHEX_MODE_WORK_WORKING: Working mode
CANHEX_MODE_WORK_CFG_MODE: Configuration mode

new_firmware_valid int

0: No new configuration can take effect at present
1: There is a new configuration that can take effect.
0: No new configuration can be effective at the moment
1: New configuration can be effective at the moment

new_conf_valid int

0: No new configuration can take effect at present
1: There is a new configuration that can take effect.
0: No new configuration can be effective at the moment
1: New configuration can be effective at the moment

current_conf_valid int 0: The current configuration is invalid

GV850 Software Development Guide

93

1: The current configuration is valid
0: The current configuration is invalid
1: The current configuration is valid

serial_conf_valid int

0: Serial port not configured (cannot be installed)
1: The serial port has been configured
0: Serial port not configured (cannot be installed)
1: Serial port configured

model_id string
Vehicle model id
Vehicle model id

model_id_state string

MISS: Clear status
EMPTY: model id is not set
SET_BY_HAND: Manually set the model id
SET_BY_HAND2: Manually set the machine model
SET_BY_SYNC: Automatic synchronization

car_name string Vehicle Name

thr_support int
0: Does not support the reading function of the driving recorder
1: Support

s string CAN module SN

event_ack_enable int
0: Received an invalid response to the event
1: Received event must be responded

canbus_active_mode int
0: CAN node works in silent mode
1: The CAN node operates in active mode.

fuel_measure_delay int
0: No delay in fuel measurement
1: Fuel measurement delay

nonautomatic_sync int
0: Allow automatic synchronization when the model id is empty.
1: Disable automatic synchronization when the model id is empty.

can1_send_disable int
0: can2 can send information
1: can2 prohibits sending information

uart_tx_wakeup int
0: The TX pin status is idle when the CAN module is in sleep mode.
1: The TX pin status is working when the CAN module is in sleep mode.

short_wakeup int
0: Enter deep sleep after 60 seconds after waking up
1: Enter deep sleep 2 seconds after waking up

low_power_mode int
0: Disable low power mode
1: Enable low power mode

ignore_diagnostic_to
ols

int
0: Stop sending messages when a diagnostic tool is detected
1: Ignore diagnostic tools

deep_sleep_mode_dis
able

int
0: Enable deep sleep function
1: Disable the deep sleep function

thr_compatibility int
0: Dashcam compatibility is disabled
1: Enable the driving recorder function compatibility

can2_send_disable int
0: can2 can send information
1: can2 prohibits sending information

query_tachograph_m
ode

int
0: Disable request for driving recorder
1: Request the dashcam to be in IGN ON state only.

GV850 Software Development Guide

94

2: Smart mode, requested when CABBUS is active.
3: You can always request.

7.1.3.4. Query car Model ID, VIN information

This interface is used to obtain the vehicle name, model id and model id source in the CAN module. Interface
get_car_params_single, payload {"params_name":"String", "from": "String"}. See the table below for parameter
payload description.

name type Remark

params_name string car_name: vehicle name

from
string cache: Get from the cache of the canobd support library

string module: Get directly from the CAN module and update the cache

$ ubus call canobd get_car_params_single '{"params_name":"model_id", "from": "cache"}'
$ ubus call canobd get_car_params_single '{"params_name":"model_id", "from": "module"}'
$ ubus call canobd get_car_params_single '{"params_name":"car_name", "from": "module"}'
$ ubus call canobd get_car_params_single '{"params_name":"vin", "from": "module"}'
{

"model_id": "004F",
"model_id_state": "SET_BY_SYNC",
"car_name": "Seat Altea (04-)",
"from": "module",
"rtn": "success"

}
Reply payload meaning table:

name type Remark

model_id string Hex value, vehicle model id, CAN module definition.

model_id_state string

MISS: Clear status
EMPTY: model id is not set
SET_BY_HAND: Manually set the model id
SET_BY_HAND2: Manually set the machine model
SET_BY_SYNC: Automatic synchronization

car_name string Vehicle Name

7.1.3.5. Clear car model id

This interface is used to clear the vehicle model id in the CAN module and delete the synchronization record
kept in the canobd support library. Interface clear_car_model_id, payload empty.
Example:
$ ubus call canobd clear_car_model_id
{

"rtn": "success"
}

GV850 Software Development Guide

95

7.1.3.6. Set the car model id

This interface is used to manually set the vehicle model id in the CAN module, which will delete the
synchronization record kept in the canobd support library. It is still necessary to call the "Car model id security
synchronization" interface to verify the model id process. The canobd support library can be compatible with the
scenarios of manually setting the model id and automatically synchronizing the model id.

name type Remark

model_id string
0-ffff, HEX value. Vehicle model id, the specific value can be found in
the information provided by the CAN module manufacturer.

Example:
$ ubus call canobd set_car_model_id_hand '{"model_id": "0x0173"}'
{

"rtn": "success"
}

7.1.3.7. Perform secure synchronization of car model ID

This interface performs the vehicle model id security synchronization process according to the internal state of
the CAN module. When the vehicle VIN code can be obtained, the synchronization is considered successful.
Therefore, after manually setting the model id, you also need to use this interface to verify whether the set model id is
normal.
Interface sync_car_model_id_safe, payload empty.
After the interface is called successfully, use the ubus call canobd get_state command to query the result.

Example:
$ ubus call canobd sync_car_model_id_safe
{

"rtn": "success"
}

7.1.3.8. Get synchronization real-time status
This interface is used to obtain the real-time status of the CAN module vehicle model id synchronization. The

synchronization confirmation status is obtained through the "14. Get synchronization confirmation status" interface.
Interface get_state, payload {"scope": "String"}.

Example:
ubus call selftask canobd.get_state '{"scope": "sync_state"}'
{

"safe_sync_type": "MISS",
"sync_frame_state": "MISS",
"dev_mode_sync_result": "MISS",
"dev_mode_sync_reason": "MISS",

GV850 Software Development Guide

96

"safe_sync_result": "MISS",
"ignition_on": "UNKNOWN",
"engine_on": "UNKNOWN",
"model_id_state": "MISS",
"model_id": "0000",
"vehicle_info": "0",
"vehicle_info_valid": 0,
"vin": "",
"vin_len": 0,
"scope": "sync_state",
"from": "cache",
"rtn": "success"

}

The reply load parameters are shown in the following table.

name
name

type
type

illustrate
Remark

safe_sync_type string
MISS: Clear status
AUTO_SYNC: Automatically synchronize and obtain model id
SET_MODEL: Manually set the model id

sync_frame_state string

MISS : Clear status
ONGOING : The synchronization process is in progress
OK : Synchronization successful
FAILED_UNRECOGNIZED : Unrecognized failure
FAILED_COMMU : Communication failed
FAILED_START : Synchronization start failed

dev_mode_sync_result string
MISS: Clear status
ONGOING: Ongoing
FAILED: Failed

dev_mode_sync_reason string

MISS: Clear status
ONGOING: Ongoing
OK: Completed
ANALYSIS: Analysis
UNRECOGNIZED: Unrecognized
UNCONNECTED: Not connected to the CAN bus

safe_sync_result string
MISS: Clear status
OK: Security synchronization successful
FAILED: Security synchronization failed

ignition_on string
UNKNOWN : IGN status, unknown
OFF ：IGN OFF
ON ：IGN ON

engine_on string
UNKNOWN: Engine status, unknown

OFF: Engine OFF

GV850 Software Development Guide

97

ON: Engine ON

model_id_state string

MISS: Clear status

EMPTY: model id is not set

SET_BY_HAND: Manually set the model id

SET_BY_HAND2: Manually set the machine model

SET_BY_SYNC: Automatic synchronization

model_id string Hex value, 0~0xffff.

vehicle_info string Hex value.

vehicle_info_valid int 0: invalid; 1: valid.

vin string VIN code: VIN code

vin_len int Value, VIN code length

7.1.3.9. Search model id by car parameter name

This interface is used to query the model id in the CAN module using the vehicle name. The -t parameter needs
to be used to set the ubus call timeout. The request timeout should be at least 80 seconds. Interface
action_canobd_model_id_search, payload {"car_name": "String"}, timeout 80. Because the query is a keyword query,
there will be multiple results. The user needs to match the model id of the most accurate result as the target model
id.

name type Remark

car_name string Vehicle name keywords

Example:
$ ubus call canobd action_canobd_model_id_search '{"car_name": "GL8"}' -t 300
{

"search_name": "GL8",
"list_num": 1,
"list": [

{
"car_name": "BUICK GL8 (10-)",
"model_id": "0x0173"

}
],
"rtn": "success"

}

7.1.3.10. Get vehicle parameter table values

This interface is used to obtain the car parameter table. These data are maintained by the car parameter polling
service. For the meaning of the reply payload, refer to "Car Parameter Table 1", "Car Parameter Table 2" and "Car

GV850 Software Development Guide

98

Parameter Table 3". Interface get_car_params_content , payload {"scope": " String "} .

name type Remark

scope string

All: Get all driver card information
car_param1: Get the information of car parameter table 1
car_param2: Get the information of car parameter table 2
car_param3: Get the information of car parameter table 3

Example:
$ ubus call canobd get_car_params_content
$ ubus call canobd get_car_params_content '{"scope": "car_param1"}'
$ ubus call canobd get_car_params_content '{"scope": "car_param2"}'
$ ubus call canobd get_car_params_content '{"scope": "car_param3"}'

7.1.3.11. Get car driver record information

This interface reads the driving time and driving behavior information of the driver card from the cache of the
canobd support library. Interface get_car_driver_card_record , payload empty or {"scope": String}, payload
parameters as shown in the following table, and the response result refers to "Driver Information Card Table" .

name type Remark

scope

string All: Get all driver card information

string card1: Get the information of driving card 1

string card2: Get the information of driving card 2

Example:
$ ubus call canobd get_car_driver_card_record '{"scope": "card1"}'
$ ubus call canobd get_car_driver_card_record '{"scope": "card2"}'
$ ubus call canobd get_car_driver_card_record '{"scope": "all"}'

7.1.3.12. Firmware upgrade interface

This interface is used to upgrade the firmware of the CAN module. The module firmware is provided by the CAN
module manufacturer. The firmware of each module is bound to the module's SN, and different devices cannot be
universal. Interface action_canobd_module_upgrade , payload {"scope": " String ", "file_path":" String "} . The meaning
of the parameters is as follows.

name type Remark

scope string firmware : The upgrade type is firmware

file_path string
The path of the firmware file in the device. You need to place the firmware file
in the specified location first, and then fill in this field

Example:
$ ubus call canobd action_canobd_module_upgrade '{"scope": "firmware",
"file_path":"/root/CL_v3.0.14_sn3863230.frm"}'
{

GV850 Software Development Guide

99

"rtn": "success"
}
Query progress
Example:
$ ubus call canobd get_state '{"scope": "upgrade_state"}'

7.1.3.13.Configure the upgrade interface

This interface is used to upgrade the configuration of the CAN module. The configuration file is provided by the CAN
module manufacturer or generated by the tool provided by the manufacturer. Interface
action_canobd_module_upgrade , payload {"scope": " String ", "file_path":" String "} . The meaning of the parameters
is as follows.

name type Remark

scope string conf: The upgrade type is configuration

file_path string
The path of the configuration file in the device. You need to place the
configuration file in the specified location first, and then fill in this field.

Example:
$ ubus call canobd action_canobd_module_upgrade '{"scope": "conf",
"file_path":"/root/queclink_xonxoff_115200.frm"}'

7.1.3.14 Query upgrade progress

This interface is used to query the firmware or configuration upgrade status and progress. After calling "27. Firmware
Upgrade Interface " or "28. Configuration Upgrade Interface ", you can query the upgrade status through this
interface. Interface get_state , payload {"scope": " String "} .
Example:
$ ubus call canobd get_state '{"scope": "upgrade_state"}'
{

"upgrade_state": "Upd Stete Ok",
"content_type": "Upgrade Content Cfg",
"sn": "",
"upgrade_version": "B18E",
"rate_progress": 100,
"time_cost": 7,
"desc": "Upd Fsm Check Ok",
"scope": "upgrade_state",
"from": "cache",
"rtn": "success"

}
Reply payload meaning table:

name type Remark

upgrade_state string
Upd Stete None : No upgrade
Upd Stete Start : Upgrade starts

GV850 Software Development Guide

100

Upd Stete Doing : Updating in progress
Upd Stete Ok : Upgrade completed
Upd Stete Terminated : Updating canceled
Upd Stete Failed : Updating failed

content_type string

Upgrade Content None : Upgrade content has no type
Upgrade Content Fw : The upgrade type is firmware
Upgrade Content Cfg : The upgrade type is configuration
Upgrade Content Cfg Keep Model : The upgrade type is
configuration and the model id is retained

s string
CAN module SN: CAN module SN, returned when the firmware is
upgraded

upgrade_version string
Version information: firmware version information or configuration
check number

rate_progress int
Range -1~100. -1 means failure, 0~100 means the progress of the
processing

time_cost int Duration, the time it takes to upgrade, in seconds

desc string Description, description of the upgrade process.

7.1.3.15. Enter /Exit Test Mode

Enter or exit the test mode. This interface is used to simulate the parameters and status of the car to help CAN
module developers to verify the developed software. Interface set_canobd_test_mode , payload {"enable": " String "} ,
parameters are as follows.

name type Remark

enable string
1: Enter test mode
0: Exit test mode

Example:
$ ubus call canobd set_canobd_test_mode '{"enable": "1"}'
$ ubus call canobd set_canobd_test_mode '{"enable": "0"}'

7.1.3.16. Module power control

This interface is used to control the power on and off of the power pin of the CAN module. Interface
set_canobd_power , payload {"enable": " String "} . Parameters are as shown in the following table.

name type Remark

enable string
0: Turn on the power
1: Turn off the power

Example:
Turn on the module power
$ ubus call canobd set_canobd_power '{"enable": "1"}'
Turn off the module power

GV850 Software Development Guide

101

$ ubus call canobd set_canobd_power '{"enable": "0"}'

7.2. Batterymgr

7.2.1. Service Introduction

This software module manages the safe and efficient charging and discharging of the internal battery . With it
running in the background, users do not have to worry about when to charge the battery, whether the charging
temperature is too high , etc. Battery management is essential for the GV850 hardware to meet CE and other
certifications.

The battery capacity of this product is 1100mAh 4.07Wh. The nominal voltage is 3.7V. This software module
realizes highly configurable battery charging and discharging process management. It mainly realizes five basic
functions.
1) Battery in-place inspection and activation management.
2) Battery overcharge, over discharge and recharge management.
3) Battery high and low temperature charging management.
4) Calculate battery capacity (based on the charge and discharge curve).
5) Battery charge and discharge control, attribute and status acquisition interface.

7.2.2. Batterymgr management logic

7.2.2.1. Battery in-place check

When the battery management service is started, the battery presence check process will be performed first, and
the battery presence status will be determined by judging the battery voltage or the battery presence detection pin.
After the presence check process, the battery presence status can be obtained. Currently, the software has set four
states, namely "Initialization not completed", "Battery not in place", "Battery in place and normal", and "Battery in
place, but needs to be activated".

There is no battery presence detection pin in the hardware at present, but we have taken it into account in the
implementation of the service program. The in-place check process is shown in the figure below. In the figure below,
Vnorm is the lowest check voltage in the normal state of the battery. Vdet is the lowest voltage in the battery
self-protection state (activation action is required). Cdet is the maximum number of battery in-place checks.

GV850 Software Development Guide

102

GV850 Software Development Guide

103

7.2.2.2. Battery activation

After the battery in-place check process is completed, if the battery in-place status is "battery in place, but needs
to be activated", the battery activation process is started. The activation process is to charge the battery intermittently
until the battery voltage reaches the Vnorm state or fails to time out. There are five states generated in the activation
process, namely "activation process not started", "no activation required", "activating", "activation failed", and
"activation successful". The process is shown in the figure below.

Where Vnorm is the lowest voltage value of the battery under normal conditions. Tchg is the activation
continuous charging duration, usually 600 seconds. Twait is the activation stop charging duration, usually 3 seconds.
Cact is the number of activation charges. When the number of activation charges exceeds this threshold, and the
battery voltage still does not meet the minimum threshold Vnorm of the normal voltage, it is determined to be an
activation failure.

After the activation process is completed, the battery initialization is complete. The next step is to manage the

GV850 Software Development Guide

104

battery usage.

7.2.2.3. Overcharge protection mechanism:

There are many reasons for overcharging, one of which is charging the battery for a long time after it is fully
charged. This will reduce the battery life or bring the risk of battery damage. The battery management module
determines whether the battery is fully charged under the guidance of the configuration. If it is fully charged, it will
directly turn off the charging enable. This achieves the purpose of overcharging protection. The following is a brief
description of the basic process of battery charging.

The battery charging process is managed by the charging IC and is divided into two stages: constant current
charging and constant voltage charging. When the battery charging voltage is less than a threshold, the charging IC
works in the constant current charging stage. When the battery voltage is greater than or equal to a threshold, it
switches to constant voltage charging. Overcharging occurs in the constant voltage charging stage. Constant voltage
charging will continue to charge the battery, but the current will gradually decrease until it is trickle charged. The
battery management service uses software to control the charging enable. When it is determined that the battery is
full, the charging enable can be directly turned off to stop charging. The charging process of this product is shown in
the figure below.

7.2.2.4. Recharge mechanism

When the battery is fully charged and drops to the recharge voltage, the charging enable is turned on to charge
the battery. This can reduce the number of battery charges and increase the battery life. When the external power is
plugged in or out, the recharge flag will be cleared.

7.2.2.5. Over-discharge protection mechanism

When the battery voltage is lower than the shutdown voltage, the battery is disconnected and the power is

GV850 Software Development Guide

105

turned off to avoid the risk of over-discharge of the battery. This protects the battery voltage from being too low.

7.2.2.6. Charging timeout mechanism

Through theoretical calculation and actual charging time, the baseband gives the charging timeout time Tc.
When the charging time exceeds Tc, the software controls the charging enable function to be turned off for 2
minutes, and then the charging enable is turned on again. In this case, retry twice. If the charging is still not
completed after two retries, and the battery voltage is not 100%, the "battery damage or charging function damage
fault" is reported. The actual charging time*1.5 is used to get it.

The charging process, recharge mechanism, and charging timeout process are shown in the figure below. Tc is
used as the charging timeout threshold. Vfull is the full-charge voltage value, which is mainly used to determine
whether it is in a constant-voltage charging state at the time. Whether it is fully charged needs to be determined
based on the charging current.

GV850 Software Development Guide

106

7.2.2.7. High and low temperature charging and discharging management

The real-time temperature of the battery is collected through the NTC sensor carried by the battery. The
charging and discharging are controlled according to the battery temperature. Currently, the default range is 0-50
degrees Celsius for charging, otherwise charging is stopped. When a high or low temperature event occurs, the
charging function will be turned on again when the temperature needs to be restored to 5-45 degrees Celsius.
Discharges are currently not treated at high and low temperatures.

7.2.2.8. Battery Charge Calculation

At present, the management program uses three reference tables for battery charge calculation: charging

GV850 Software Development Guide

107

battery voltage, discharging battery voltage, and charging current. At present, the battery charge needs to be
actually tested and calibrated in the above three tables to achieve an accurate and reasonable charge value.

When the battery is in the discharge state, only the discharge curve is used to calculate the power value. In the
charging state, the first half of the power depends on the charging voltage curve, and the second half of the power
depends on the charging current curve. The charging power dividing line depends on the configuration file.

7.2.3. Batterymgr Core Interface

7.2.3.1. Get battery management configuration

Get the battery-related configuration of the Batterymgr service background.
$ ubus call selftask batt.get_config
{

"detection": {
"det_vol": 1000,
"det_cnt": 3

},
"activate": {

"act_vol": 3000,
"act_cnt": 2,
"act_charge_time": 600,
"act_charge_wait_time": 3

},
"common": {

"vol_extern_power": 10500,
"charge_vol_max": 4400,
"charge_cur_max": 400,
"vol_power_off": 3460,
"vol_fall_charge": 3950,
"vol_fall_charge_adapt": 0,
"vol_full_charge": 4120,
"vol_full_charge_adapt": 0,
"per_full_charge": 98,
"cur_full_charge": 160,
"cur_full_charge_adapt": 0,
"timeout_charge": 28800,
"timeout_charge_silent": 120,
"timeout_charge_long_silent": 1200,
"timeout_charge_try_cnt": 3

},
"temp_threshold": [

{
"temp_lower": 0,
"temp_upper": 50,
"temp_lower_recover_delta": 5,
"temp_upper_recover_delta": 5

GV850 Software Development Guide

108

}
],
"rtn": "success"

}

The configuration parameters are described in the following table.

name type Remark

detection.det_vol int The minimum voltage threshold for battery voltage presence
check, in mV.

detection.det_cnt int Maximum number of battery presence checks

activate.act_vol int The minimum voltage threshold for successful battery
activation, in mV.

activate.act_cnt int Battery activation times

activate.act_charge_time int Battery activation continuous charging time, in seconds

common.vol_extern_power int Minimum voltage value for external power supply in place
check, in mV.

common.charge_vol_max int The maximum charging voltage of the battery, in mv.

common.charge_cur_max int The maximum battery charging current threshold, in mA.

common.vol_power_off int Battery shutdown voltage, in mV.

common.vol_fall_charge int Recharge voltage threshold. When the voltage is lower than
the threshold, the recharge mark is cleared and charging is
performed.

common.vol_fall_charge_adapt int Recharge voltage threshold adjustment value, reserved.

common.vol_full_charge int Full charge voltage threshold, in mV.

common.vol_full_charge_adapt int Full charge voltage adjustment value, reserved.

common.per_full_charge int Full power percentage, reserved.

common.cur_full_charge int Minimum charging current threshold for full charging, in mA.

common.cur_full_charge_adapt int Corrected value of cur_full_charge, reserved.

common.timeout_charge int Charging timeout, in seconds.

common.timeout_charge_silent int After charging times out, stop charging for a certain period
of time. Unit: seconds.

common.timeout_charge_long_silent int When multiple charging times have expired, the charging will
stop for a certain period of time, in seconds.

common.timeout_charge_try_cnt int Charging timeout threshold. If the number of times exceeds
this threshold, it is considered a timeout event.

temp_threshold.temp_lower int Low temperature threshold, controls whether charging is
allowed.

temp_threshold.temp_upper int High temperature threshold, controls whether charging is
allowed.

temp_threshold.temp_lower_recover_delta int The difference between the recovery value and the threshold
after a low temperature event. Always a positive number.

temp_threshold.temp_upper_recover_delta int The difference between the recovery value and the threshold
after a high temperature event. Always a positive number.

GV850 Software Development Guide

109

7.2.3.2. Get battery status

Get the status of the battery.
$ ubus call selftask batt.get_state
{

"mgr_enable": "1",
"calibration_state": "BATT_CAL_NONE",
"detection_state": "BATT_DET_EXIST_VOL",
"activate_state": "BATT_ACT_NO_NEED",
"discharge_enable": "1",
"discharge_voltage": "4.099",
"charge_enable": "1",
"charge_state": "CHARHING",
"charge_voltage": "4.099",
"charge_current": "194",
"recharge_state": "CLEAN_RECHAGE",
"extern_power_state": "INSERT",
"extern_power_voltage": "12.026",
"temp": "29",
"percent": "15",
"rtn": "success"

}
The battery management module provides an external interface for querying the battery status and controlling

the battery charging and discharging hardware. The queryable status is shown in the following table:

name type Remark

mgr_enable string Whether battery management is enabled. 0: Disable; 1: Enable.

calibration_state string Battery voltage calibration status. BATT_CAL_NONE: not calibrated;
BATT_CAL_DONE: calibrated.

detection_state string Battery initialization check status .
BATT_DET_NONE: initialization is not completed;
BATT_DET_NOT_EXIST: The battery is not in place;
BATT_DET_EXIST_VOL: The battery is in place and normal;
BATT_DET_EXIST_VOL_ACT: The battery is present but needs to be activated.

activate_state string Battery activation status.
BATT_ACT_NONE: the activation process is not started;
BATT_ACT_NO_NEED: No activation required;
BATT_ACT_DOING_NOW: activating;
BATT_ACT_FAILED: activation failed;
BATT_ACT_SUCCESS: Activation successful.

discharge_enable string Battery discharge enable status. 0: Disable; 1: Enable.

discharge_voltage string Battery voltage when battery discharge is enabled. Unit: V.

charge_enable string Battery charging enable status. 0: Disable; 1: Enable.

charge_state string Battery charging status. CHARHING: Charging; NOT_CHARGE: Not charging.

GV850 Software Development Guide

110

charge_voltage string Battery voltage when battery charging is enabled. Unit: V.

charge_current string Battery charging current. Unit: ma.

recharge_state string Battery recharge status, that is, the mark is set after full charge and cleared
when the battery drops to the recharge voltage.
WAIT_RECHAGE : After fully charged, set the flag and wait for recharging;
CLEAN_RECHAGE : Clear the mark and perform recharge.

extern_power_state string External power plugged in.
INSERT : external power access;
NOT_INSERT : external power is not connected;

extern_power_voltage string External voltage value, unit is V.

percent string Battery level, range 0-100.

temp string Battery NTC temperature. Unit: degrees.

ubus call selftask batt.get_config

7.2.3.3. Battery discharge/charge enable

batt.set_control '{"scope": "String", "enable":"String", "attr":"String"}'
Example:
$ ubus call selftask batt.set_control '{"scope": "discharge", "enable":"1", "attr":"ONLY_SET_HW"}'
{

"rtn": "success"
}

name type Remark

scope String ​ The object to be set. The possible range is "discharge " : means to control
discharge enable; "charge": means to control charge enable.

enable string Enable flag. 0: Disable; 1: Enable.

attr string Control attribute flags.
ONLY_SET_HW : Only set the hardware pins, without changing the program's
internal flags.
BOTH_SET_HW_SW : Set the hardware pin and change the program internal
flag.
ALL_SET_AND_FORCE : Set the hardware pins and change the program's
internal flags. Disable the program's internal control mechanism and force the
corresponding control to be set.
RECOVERY_SW_CONTROL : Set the hardware pins and change the program
internal flags. Recover the program's internal control mechanism.

7.3. Selftask

In order to meet the testing needs, Queclink developed the selftask module to simulate actual business scenarios. Its

GV850 Software Development Guide

111

main function is to collect system and module information and send messages to the server at set periodic intervals .
selftask device runs automatically after booting, and can be stopped/started by the following commands .
Stop the program :

$ /etc/init.d/S99selftask stop
OK

Start the program:
$ /etc/init.d/S99selftask start
OK

7.3.1. Reporting messages

The message uses JSON format , as shown below:
{

"SYSTEM":{
"version":"GV850_R00A01V01",
"model":"GV850CEU",
"hardware_version":"V1.01",
"kernel_version":"5.15.67",
"date":"Sat Jan 1 00:35:11 UTC 2000",
"uptime":"00:35:02",
"rootfs_size":"19.2 MB",
"ram_size":"78032/106632 KB"

},
"LTE":{

"version":"EG915UECABR03A03M08_01.200.01.200",
"imei":"866344050767040",
"csq":"9,99",
"qcsq":"\"LTE\",94,-128,45,-16",
"sim":"READY",
"iccid":"89860119801697983674",
"cs":"0,1",
"qspn":"\"CHN-UNICOM\",\"UNICOM\",\"\",0,\"46001\"",
"qnwinfo":"\"FDD LTE\",\"46001\",\"LTE BAND 3\",1650",
"ps":"1",
"pdp":"1,1,1,\"10.69.230.192\"",
"sock":"0,\"TCP\",\"218.17.50.142\",971,0,2,1,0,0,\"uart1\""

},
" CANOBD " :{

"vehicle_sleep": "Active",
"can1_state": "Car Can Bus Not Used",
"can2_state": "Car Can Bus Error",
"can_bus_ign": "Can Ign Not Available",
"pin_ign": "Car Ign On",
"engine_state": "Car Engine Off",
"ddd_dstate": "Car Remote Ddd Download Not Support",

GV850 Software Development Guide

112

"th_comm_state": "Car Tachograph Comm State No",
"kline_state": "Car Kline State Bus Not Use"

},
"BATT": {

"mgr_enable": "1",
"calibration_state": "BATT_CAL_NONE",
"detection_state": "BATT_DET_EXIST_VOL",
"activate_state": "BATT_ACT_NO_NEED",
"discharge_enable": "1",
"discharge_voltage": "4.099",
"charge_enable": "1",
"charge_state": "CHARHING",
"charge_voltage": "4.099",
"charge_current": "194",
"recharge_state": "CLEAN_RECHAGE",
"extern_power_state": "INSERT",
"extern_power_voltage": "12.026",
"percent": "15",
"temp": "29"

} ,
"WDG":{

},
"RTC":{

},
"BLE":{

"version":"NABE5_BT_R00A02V03",
"boot_version":"NABE5_BT_BOOTR00A01V01",

},
"GSENSOR":{

},
"GPS":{

"firmware version": "ROM SPG 5.10 (7b202e)",
"state": "3D fixed",
"utc time": "2024-01-18 14:14:24",
"longitude": "113.947969",
"latitude": "22.573546",
"altitude": "116.400002",
"speed": "0.009260km\/h"

},
"CAN":{

"type":"external",

GV850 Software Development Guide

113

"version":"3.0.8m",
},
"RS232":[{

},
{

}],
"RS485":{

},
"16PIN":{

},
"10PIN":{

},
}

The message data parameters are described as follows:
SYSTEM section:

name type Remark

version string Software version , such as :
GV850_R00A01V01

model string Device model , such as :
GV850CEU

har dware_version string Hardware version , such as:
V1.01

kernel_version string Kernel version, such as:
5.15.67

date string System time, such as:
Sat Jan 1 00:20:59 UTC 2000

uptime string Run time, such as :
00:21:02

rootfs_size ​ st ring

r am_size st ring Memory status , such as:

For the LTE part, the message parameters are described in the following table :

name type Remark

version string Firmware version, such as:
EG915UEUABR02A05M08_01.001.01.001

im ei string Module IMEI.

GV850 Software Development Guide

114

csq string Signal quality .

Qq string Signal quality .

sim string SIM card status ,

iccid string SIM card number ,

cs string CS domain registration status,

q spn string Operator information,

qnwinfo string Operator network information,

ps string PS domain registration status,

pd p string PDP data service information,

sock string Data connection information,

The CANOBD part , the message parameters are described in the following table :

name type illustrate

vehicle_sleep string Vehicle sleep mode
Active: The vehicle CAN bus is active and the engine is started
Sleep: Car CAN sleep and engine shutdown

can1_state string CAN1 bus status
Car Can Bus In Sleep: Car CAN bus sleep state
Car Can Bus Active: Car CAN bus active status
Car Can Bus Error: Car CAN bus error
Car Can Bus Not Used: Car CAN bus is not enabled

can2_state string CAN2 bus status
Same as CAN1 bus status

can_bus_ign string IGN signal obtained by the CAN module
Car Ign Off: IGN off state
Car Ign On: IGN on
Car Ign Bus Error: CAN BUS error
Can Ign Not Available: The parameter is invalid.

pin_ign string Hardware PIN pin IGN status :
Car Ign Off: IGN off state
Car Ign On: IGN on

engine_state string Engine status
Car Engine Off: Engine off
Car Engine On: Engine on
Car Engine Bus Error: CAN BUS error
Can Engine Not Available: The parameter is invalid.

ddd_dstate st ring DDD Download Status
Car Remote Ddd Download Disable : Remote DDD download function is
disabled
Car Remote Ddd Download Enable : Remote DDD download function is
enabled
Car Remote Ddd Download Comm Error : Remote DDD download
communication error
Car Remote Ddd Download Not Support : Remote DDD download is not
supported

GV850 Software Development Guide

115

th_comm_state st ring Communication status of driving recorder
Car Tachograph Comm State No: No communication with the dashcam
Car Tachograph Comm State Online: Driving records are available online
Car Tachograph Comm State Comm Err: Car Tachograph communication error
Car Tachograph Comm State Not Support: Communication with the driving
recorder is not supported

kline_state st ring KLine communication status
Car Kline State In Sleep: Kline is in sleep state
Car Kline State Active: Kline is in active state
Car Kline State Bus Error: Kline bus error
Car Kline State Bus Not Use: kline is not enabled

In the BATT part , the message parameters are described in the following table :

name type Remark

mgr_enable string Whether battery management is enabled. 0: Disable; 1: Enable.

calibration_state string Battery voltage calibration status. BATT_CAL_NONE: not calibrated;
BATT_CAL_DONE: calibrated.

detection_state string Battery initialization check status .
BATT_DET_NONE: initialization is not completed;
BATT_DET_NOT_EXIST: The battery is not in place;
BATT_DET_EXIST_VOL: The battery is in place and normal;
BATT_DET_EXIST_VOL_ACT: The battery is present but needs to be activated.

activate_state string Battery activation status.
BATT_ACT_NONE: the activation process is not started;
BATT_ACT_NO_NEED: No activation required;
BATT_ACT_DOING_NOW: activating;
BATT_ACT_FAILED: activation failed;
BATT_ACT_SUCCESS: Activation successful.

discharge_enable string Battery discharge enable status. 0: Disable; 1: Enable.

discharge_voltage string Battery voltage when battery discharge is enabled. Unit: V.

charge_enable string Battery charging enable status. 0: Disable; 1: Enable.

charge_state string Battery charging status. CHARHING: Charging; NOT_CHARGE: Not charging.

charge_voltage string Battery voltage when battery charging is enabled. Unit: V.

charge_current string Battery charging current. Unit: ma.

recharge_state string Battery recharge status, that is, the mark is set after full charge and cleared
when the battery drops to the recharge voltage.
WAIT_RECHAGE : After fully charged, set the flag and wait for recharging;
CLEAN_RECHAGE : Clear the mark and perform recharge.

extern_power_state string External power plugged in.
INSERT : external power access;
NOT_INSERT : external power is not connected;

extern_power_voltage string External voltage value, unit is V.

GV850 Software Development Guide

116

percent string Battery level, range 0-100.

temp string Battery NTC temperature. Unit: degrees.

For GPS , the message parameters are described in the following table :

name type Remark

Fireware version string Firmware version, such as:
ROM SPG 5.10 (7b202e)

state string Working status. For example: 3D fixed

utc time string Utc time . The format is: YYYY-MM-DD HH:MM:SS

longitude string Longitude. For example: 113.947969

latitude string Latitude. For example: 22.573546

altitude string Altitude

speed string Speed. For example: 0.009260km/h

BLE part ,

name type Remark

Version ​ String ​ Firmware version , such as:
NABE5_BT_R00A02V03

boot_version string BOOT version , such as:
NABE5_BT_BOOTR00A01V01

7.3.2. Core Interface

7.3.2.1. Reporting Configuration

Set the remote TCP server IP address and port, and message interval .
"modem.config":{"tcp_remote_addr":"String","tcp_remote_port":Integer,"report_interval":Integer}

Example:
$ ubus call selftask modem.config '{"tcp_remote_addr":"218.17.50.142","tcp_remote_port":971,"report_interval":3}'
{

"rtn": "success"
}

7.3.2. 2. AT command transparent transmission
Send AT commands and receive response messages .
"modem.raw":{"cmd":"String","timeout":"Integer"}

Example:
$ ubus call selftask modem.raw '{"cmd":"AT+CPIN?"}'
{

"rtn": "success",
"data": "\r\n+CPIN: READY\r\n\r\nOK\r\n"

}

GV850 Software Development Guide

117

7.3.2. 3. Query status information

Query the basic status of the LTE module.
"modem.get_state":{}

Example :
$ ubus call selftask modem.get_state
{

"version": "EG915UEUABR02A05M08_01.001.01.001",
"imei": "866344050762298",
"sim": "READY",
"iccid": "89860119801697983674",
"cs": "0,1",
"ps": "1",
"pdp": "1,1,1,\"10.32.148.5\"",
"sock": "0,\"TCP\",\"218.17.50.142\",971,0,2,1,0,0,\"uart1\""

}

7.3.2.4. Query positioning status

Query the GPS version and positioning status.
" gps.get_state ":{" firmware version ":"String"," state ":"String"}

Example:
$ ubus call selftask gps.get_state
{

"firmware version": "ROM SPG 5.10 (7b202e)",
"state": "2D fixed"

}

7.3.2.5. Query GPS location information
" gps . get_location "

Example:
$ ubus call selftask gps .get_location
{

"state": "2D fixed",
"utc time": "2024-01-19 07:19:08",
"longitude": "113.947976",
"latitude": "22.573527",
"altitude": "116.000000",
"speed": "0.014816km/h"

}

GV850 Software Development Guide

118

7.4. Testcase

7.4.1 Module Introduction

We provide a web testing service for the device, which allows you to directly open the device's test web page
through the browser of the development coCPUter to preview and test the functions. This service is convenient for
customers to conduct functional testing and reference code. The web service uses the python+flask solution.
Specific features include:

Hardware Module Test content

Device View device version information and memory status

RTC Check and set the device system time

G NSS Check the device positioning status every three seconds

LTE View LTE module information and transparent transmission AT command test

led Control three LED lights to test

CAN Use CAN module to send and receive data test

RS232/RS485 Set RS485/RS232 port baud rate and send and receive data test

Batte r y manage Read the device's external power and backup power voltage and control the device's
battery charging and discharging . Query the battery's charging status and current.

IO Read device DIN and set device OUT status

ADC Read the value of the device AIN port

IMU Read and set the G-Sensor register value

Standby Test system sleep and wakeup through RTC

BLE View the basic information of the device's BLE module

Sensor Read the device's real-time G-Sensor data

Report Set TCP server parameters. This server is used to receive selftask report messages.

7.4.2. Page Display

The Device subpage displays some basic information about the device and dynamically refreshes the memory usage.

GV850 Software Development Guide

119

The RTC subpage supports setting the system time and setting the system time to the RTC.

In the GPS subpage, click the OFF/ON button to turn the GPS power off/on. Click the " Stop refresh " button to turn
the positioning information refresh on/off.

GV850 Software Development Guide

120

The LTE subpage is used for LTE module testing. Fill in the AT command in the CMD input box and click the " Test "
button to test the command return value. It is often used to set the APN parameters of the module.

GV850 Software Development Guide

121

The LED subpage is used for LED testing. Clicking a switch can control the corresponding LED light.

The CAN subpage is used to test the data transmission and reception of the device CAN module.

GV850 Software Development Guide

122

The RS232/RS485 subpage is used for RS485/232 port configuration and data transmission and reception test.

The Battery Manager sub-page is as follows. Since reading the device battery voltage will cause the battery to
discharge, no data will be read after entering the page. You can click the corresponding button to test the
corresponding function.

GV850 Software Development Guide

123

After clicking the "Start refresh" button on the Battery manager subpage, the page data will be automatically
refreshed as follows:

The IO sub-page can be used to set the device OUT terminal and read the DIN terminal.

GV850 Software Development Guide

124

The ADC subpage can be used to read the voltage value of the device's AIN terminal.

GV850 Software Development Guide

125

The IMU subpage can be used to read and set the values of the device's G-Sensor module registers.

GV850 Software Development Guide

126

The Standby subpage is used to test the device's low power mode wake-up function. The page can be configured
with a specified duration and a specified time point to wake the device from low power mode.

GV850 Software Development Guide

127

The BLE subpage is used to read the basic information of the BLE module.

The Sensor subpage is used to read the value of the G-Sensor gravity acceleration XYZ and demonstrate the
real-time angle of the device.

GV850 Software Development Guide

128

The Report subpage is used to set the TCP server parameters. The server is used for receiving the device's active
report messages.

	0.Revision History
	1.Overview
	2.Platform Development
	2.1.Device Tree
	2.2.Boot Chain
	2.3.Compilation Method
	2.4.Programming
	USB OTG
	OTA

	3.Application Development
	3.1. Programming Languages
	3.2. Queclink Software Package Compilation
	3.3. Debugging Methods
	3.3.1. UART Console Debugging
	3.3.2. USB Port Debugging
	3.3.3. Debugging Tools
	3.3.4. Terminal Login
	3.3.5. Internet Access to the Internet
	3.3.5.1. LTE Cellular Network
	3.3.5.2. USB Ethernet/RNDIS Gadget Network

	3.3.6. Modify the default IPv4 address of the USB

	3.4. Custom Packages
	3.5. Device logs
	3.5.1. System log
	3.5.2.Application log

	4.Interface and Driver
	4.1.LED
	4.2.LTE
	4.2.1 UART Modem
	4.2.2 Ethernet Adapter

	4.3.GNSS
	4.4.CAN Module
	4.4.1 GV80 CAN OBD Module
	4.4.2 GV8551 Raw CAN FD

	4.5.G-sensor
	4.6.BLE
	4.7.RS232/RS485
	4.8.GPIO&ADC&1-WIRE
	4.9.Watchdog
	4.10.RTC
	4.11.Power&Battery
	4.11.1.Get Main power voltage
	4.11.2.Get battery voltage
	4.11.3.Battery Charging
	4.11.4.Reading battery temperature

	4.12.Hardware version

	5.System Sleep
	5.1.ST official description
	5.2.Device wakeup source
	5.3.RTC Wake-up
	5.4.UART Wake-up
	6.3 USB Wake-up
	6.4 G-Sensor Wake-up
	6.5 IGN Wake-up
	6.6 POWER Wake-up
	6.7 IO Input Wake-up
	6.8 Button Wake-up
	6.9 CAN OBD module Wake-up

	6.Example of Codes
	6.1.utils_info
	6.2.example_modem_at
	6.3.example_formula_can
	6.4.example_gsensor
	6.5.example_ble
	6.6.example_input_intr
	6.7.gpiosnoop

	7.Queclink Software Modules Queclink Software Module
	7.1.Canobd
	7.1.1. Introduction to CAN Module
	7.1.2. CAN module automotive parameter table
	7.1.3. CANOBD Core Interface
	7.1.3.1. Get API version
	7.1.3.2. Raw frame channel
	7.1.3.3. Query module status
	7.1.3.4. Query car Model ID, VIN information
	7.1.3.5. Clear car model id
	7.1.3.6. Set the car model id
	7.1.3.7. Perform secure synchronization of car mod
	7.1.3.9. Search model id by car parameter name
	7.1.3.10. Get vehicle parameter table values
	7.1.3.11. Get car driver record information
	7.1.3.12. Firmware upgrade interface
	7.1.3.13.Configure the upgrade interface
	7.1.3.14 Query upgrade progress
	7.1.3.15. Enter /Exit Test Mode
	7.1.3.16. Module power control

	7.2.Batterymgr
	7.2.1. Service Introduction
	7.2.2. Batterymgr management logic
	7.2.2.1. Battery in-place check
	7.2.2.2. Battery activation
	7.2.2.3. Overcharge protection mechanism:
	7.2.2.4. Recharge mechanism
	7.2.2.5. Over-discharge protection mechanism
	7.2.2.6. Charging timeout mechanism
	7.2.2.7. High and low temperature charging and dis
	7.2.2.8. Battery Charge Calculation

	7.2.3. Batterymgr Core Interface
	7.2.3.1. Get battery management configuration
	7.2.3.2. Get battery status
	7.2.3.3. Battery discharge/charge enable

	7.3. Selftask
	7.3.1. Reporting messages
	7.3.2. Core Interface
	7.3.2.1. Reporting Configuration
	7.3.2. 3. Query status information
	7.3.2.4. Query positioning status

	7.4. Testcase
	7.4.1 Module Introduction
	7.4.2. Page Display

